230 research outputs found
Lipid changes within the epidermis of living skin equivalents observed across a time-course by MALDI-MS imaging and profiling
© 2015 Mitchell et al. Abstract Background: Mass spectrometry imaging (MSI) is a powerful tool for the study of intact tissue sections. Here, its application to the study of the distribution of lipids in sections of reconstructed living skin equivalents during their development and maturation is described. Methods: Living skin equivalent (LSE) samples were obtained at 14 days development, re-suspended in maintenance medium and incubated for 24 h after delivery. The medium was then changed, the LSE re-incubated and samples taken at 4, 6 and 24 h time points. Mass spectra and mass spectral images were recorded from 12 μm sections of the LSE taken at each time point for comparison using matrix assisted laser desorption ionisation mass spectrometry. Results: A large number of lipid species were identified in the LSE via accurate mass-measurement MS and MSMS experiments carried out directly on the tissue sections. MS images acquired at a spatial resolution of 50 μm × 50 μm showed the distribution of identified lipids within the developing LSE and changes in their distribution with time. In particular development of an epidermal layer was observable as a compaction of the distribution of phosphatidylcholine species. Conclusions: MSI can be used to study changes in lipid composition in LSE. Determination of the changes in lipid distribution during the maturation of the LSE will assist in the identification of treatment responses in future investigations
Spatial quantitation of drugs in tissues using liquid extraction surface analysis mass spectrometry imaging
Liquid extraction surface analysis mass spectrometry imaging (LESA-MSI) has been shown to be an effective tissue profiling and imaging technique, producing robust and reliable qualitative distribution images of an analyte or analytes in tissue sections. Here, we expand the use of LESA-MSI beyond qualitative analysis to a quantitative analytical technique by employing a mimetic tissue model previously shown to be applicable for MALDI-MSI quantitation. Liver homogenate was used to generate a viable and molecularly relevant control matrix for spiked drug standards which can be frozen, sectioned and subsequently analyzed for the generation of calibration curves to quantify unknown tissue section samples. The effects of extraction solvent composition, tissue thickness and solvent/tissue contact time were explored prior to any quantitative studies in order to optimize the LESA-MSI method across several different chemical entities. The use of a internal standard to normalize regional differences in ionization response across tissue sections was also investigated. Data are presented comparing quantitative results generated by LESA-MSI to LC-MS/MS. Subsequent analysis of adjacent tissue sections using DESI-MSI is also reported
Mass spectrometry imaging of cassette-dosed drugs for higher throughput pharmacokinetic and biodistribution analysis
Cassette dosing of compounds for preclinical drug plasma pharmacokinetic analysis has been shown to be a powerful strategy within the pharmaceutical industry for increasing throughput while decreasing the number of animals used. Presented here for the first time is data on the application of a cassette dosing strategy for label-free tissue distribution studies. The aim of the study was to image the spatial distribution of eight nonproprietary drugs (haloperidol, bufuralol, midazolam, clozapine, terfenadine, erlotinib, olanzapine, and moxifloxacin) in multiple tissues after oral and intravenous cassette dosing (four compounds per dose route). An array of mass spectrometry imaging technologies, including matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI), liquid extraction surface analysis tandem mass spectrometry (LESA-MS/MS), and desorption electrospray ionization mass spectrometry (DESI-MS) was used. Tissue analysis following intravenous and oral administration of discretely and cassette-dosed compounds demonstrated similar relative abundances across a range of tissues indicating that a cassette dosing approach was applicable. MALDI MSI was unsuccessful in detecting all of the target compounds; therefore, DESI MSI, a complementary mass spectrometry imaging technique, was used to detect additional target compounds. In addition, by adapting technology used for tissue profiling (LESA-MS/MS) low spatial resolution mass spectrometry imaging (∼1 mm) was possible for all targets across all tissues. This study exemplifies the power of multiplatform MSI analysis within a pharmaceutical research and development (R&D) environment. Furthermore, we have illustrated that the cassette dosing approach can be readily applied to provide combined, label-free pharmacokinetic and drug distribution data at an early stage of the drug discovery/development process while minimizing animal usage
Satisfaction with Life Scale among adolescents and young adults in Portugal: extending evidence of construct validity
The paper presents three empirical studies designed to extend the test of the
construct validity of the Satisfaction With Life Scale (SWLS) among Portuguese students.
In the first study, the responses of 461 elementary and secondary education students were
submitted to a principal component analysis. A solution of one single factor was chosen, accounting for 55.7 % of the total variance, with Cronbach alpha coefficient and inter-item correlation above .70 and .20, respectively. The second study used a sample of 317
undergraduate students and registered a similar factor solution for SWLS (/pq = 0.99), which accounted for 65.6 % of the total variance (Cronbach alpha .89 and inter-item correlation above .20). A test–retest analysis registered coefficients of .70 (T2) and .77 (T3) and no significant statistically differences between T2, T3 and T1. The third study used a sample of 107 foster care youths from elementary and secondary education. Confirmatory factor analysis results indicate adequate fit indexes for the one-factor solution (v2/df = 2.70, GFI = .96, CFI = .96), which showed convergent validity, reliability and homogeneity. In conclusion, there is psychometric evidence for the one-factor structure of the SWLS in Portugal.FCTCOMPET
Extensive microbial and functional diversity within the chicken cecal microbiome
Chickens are major source of food and protein worldwide. Feed conversion and the health of chickens relies on the largely unexplored complex microbial community that inhabits the chicken gut, including the ceca. We have carried out deep microbial community profiling of the microbiota in twenty cecal samples via 16S rRNA gene sequences and an in-depth metagenomics analysis of a single cecal microbiota. We recovered 699 phylotypes, over half of which appear to represent previously unknown species. We obtained 648,251 environmental gene tags (EGTs), the majority of which represent new species. These were binned into over two-dozen draft genomes, which included Campylobacter jejuni and Helicobacter pullorum. We found numerous polysaccharide- and oligosaccharide-degrading enzymes encoding within the metagenome, some of which appeared to be part of polysaccharide utilization systems with genetic evidence for the co-ordination of polysaccharide degradation with sugar transport and utilization. The cecal metagenome encodes several fermentation pathways leading to the production of short-chain fatty acids, including some with novel features. We found a dozen uptake hydrogenases encoded in the metagenome and speculate that these provide major hydrogen sinks within this microbial community and might explain the high abundance of several genera within this microbiome, including Campylobacter, Helicobacter and Megamonas
Taxonomic review of the genus Adelomelon (Gastropoda; Volutidae), based on type material
Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging
Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (Ki-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development
t4 Report Metabolomics in Toxicology and Preclinical Research
Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways. It allows rapid identification of the potential targets of a hazardous compound. It can give information on target organs and often can help to improve our understanding regarding the mode-of-action of a given compound. Such insights aid the discovery of biomarkers that either indicate pathophysiological conditions or help the monitoring of the efficacy of drug therapies. The first toxicological applications of metabolomics were for mechanistic research, but different ways to use the technology in a regulatory context are being explored. Ideally, further progress in that direction will position the metabolomics approach to address the challenges of toxicology of the 21st century. To address these issues, scientists from academia, industry, and regulatory bodies came together in a workshop to discuss the current status of applied metabolomics and its potential in the safety assessment of compounds. We report here on the conclusions of three working groups addressing questions regarding 1) metabolomics for in vitro studies 2) the appropriate use of metabolomics in systems toxicology, and 3) use of metabolomics in a regulatory contex
Cryptic Patterning of Avian Skin Confers a Developmental Facility for Loss of Neck Feathering
Vertebrate skin is characterized by its patterned array of appendages, whether feathers, hairs, or scales. In avian skin the distribution of feathers occurs on two distinct spatial levels. Grouping of feathers within discrete tracts, with bare skin lying between the tracts, is termed the macropattern, while the smaller scale periodic spacing between individual feathers is referred to as the micropattern. The degree of integration between the patterning mechanisms that operate on these two scales during development and the mechanisms underlying the remarkable evolvability of skin macropatterns are unknown. A striking example of macropattern variation is the convergent loss of neck feathering in multiple species, a trait associated with heat tolerance in both wild and domestic birds. In chicken, a mutation called Naked neck is characterized by a reduction of body feathering and completely bare neck. Here we perform genetic fine mapping of the causative region and identify a large insertion associated with the Naked neck trait. A strong candidate gene in the critical interval, BMP12/GDF7, displays markedly elevated expression in Naked neck embryonic skin due to a cis-regulatory effect of the causative mutation. BMP family members inhibit embryonic feather formation by acting in a reaction-diffusion mechanism, and we find that selective production of retinoic acid by neck skin potentiates BMP signaling, making neck skin more sensitive than body skin to suppression of feather development. This selective production of retinoic acid by neck skin constitutes a cryptic pattern as its effects on feathering are not revealed until gross BMP levels are altered. This developmental modularity of neck and body skin allows simple quantitative changes in BMP levels to produce a sparsely feathered or bare neck while maintaining robust feather patterning on the body
Impact of dietary incorporation of Spirulina (Arthrospira platensis) and exogenous enzymes on broiler performance, carcass traits and meat quality
This study assessed the effect of Spirulina
(Arthrospira platensis), individually and in combination
with exogenous enzymes, on growth
performance, carcass traits, and meat quality of broiler
chickens. One hundred and twenty Ross 308 male
chickens were allocated into 40 battery brooders, with 3
birds per cage, and fed ad libitum a corn-based diet
during the first 21 D of the trial. The experimental period
lasted from day 21 to 35, during which birds were fed 4
different diets: a corn-soybean basal diet, taken as the
control group, a basal diet containing 15% Spirulina
(MA), a basal diet containing 15% Spirulina plus 0.005%
Rovabio Excel AP (MAR), and a basal diet containing
15% Spirulina plus 0.01% lysozyme (MAL). Body weight
gain (P , 0.001) and feed conversion rate (P , 0.001)
were improved in control chickens, when compared with
those fed with Spirulina. In addition, Spirulina increased
the length of duodenum plus jejunum in relation to the
other treatment (P , 0.01). Chickens on the MAL diet showed a considerable increase in digesta viscosity
(P , 0.05) compared with the control group. Breast and
thigh meats from chickens fed with Spirulina, with or
without the addition of exogenous enzymes, had higher
values of yellowness (b*) (P , 0.001), total carotenoids
(P , 0.001), and saturated fatty acids (P , 0.001),
whereas n-3 polyunsaturated fatty acid (P , 0.01) and
a-tocopherol (P , 0.001) decreased, when compared
with the control. In conclusion, the incorporation of 15%
Spirulina in broiler diets, individually or combined with
exogenous enzymes, reduced birds’ performance through
a higher digesta viscosity, which is likely associated with
the gelation of microalga indigestible proteins. In addition,
cell wall of Spirulina was successfully broken by the
addition of lysozyme, but not by Rovabio Excel AP.
Therefore, we anticipate that the combination of lysozyme
with an exogenous specific peptidase could improve
the digestibility of proteins from this microalga and
avoid their detrimental gelationinfo:eu-repo/semantics/publishedVersio
- …
