6,916 research outputs found
Selection of neutralizing antibody escape mutants with type A influenza virus HA-specific polyclonal antisera: possible significance for antigenic drift
Ten antisera were produced in rabbits by two or three intravenous injections of inactivated whole influenza type A virions. All contained haemagglutination-inhibition (HI) antibody directed predominantly to an epitope in antigenic site B and, in addition, various amounts of antibodies to an epitope in site A and in site D. The ability of untreated antisera to select neutralization escape mutants was investigated by incubating virus possessing the homologous haemagglutinin with antiserum adjusted to contain anti-B epitope HI titres of 100, 1000 and 10000 HIU/ml. Virus-antiserum mixtures were inoculated into embryonated hen's eggs, and progeny virus examined without further selection. Forty percent of the antisera at a titre of 1000 HIU/ml selected neutralizing antibody escape mutants as defined by their lack of reactivity to Mab HC10 (site B), and unchanged reactivity to other Mabs to site A and site D epitopes. All escape mutant-selecting antisera had a ratio of anti-site B (HC10)-epitope antibody[ratio]other antibodies of [gt-or-equal, slanted]2·0[ratio]1. The antiserum with the highest ratio (7·4[ratio]1) selected escape mutants in all eggs tested in four different experiments. No antiserum used at a titre of 10000 HIU/ml allowed multiplication of any virus. All antisera used at a titre of 100 HIU/ml permitted virus growth, but this was wild-type (wt) virus. We conclude that a predominant epitope-specific antibody response, a titre of [gt-or-equal, slanted]1000 HIU/ml, and a low absolute titre of other antibodies ([less-than-or-eq, slant]500 HIU/ml) are three requirements for the selection of escape mutants. None of the antisera in this study could have selected escape mutants without an appropriate dilution factor, so the occurrence of an escape mutant-selecting antiserum in nature is likely to be a rare event
A Bayesian spatio-temporal model of panel design data: airborne particle number concentration in Brisbane, Australia
This paper outlines a methodology for semi-parametric spatio-temporal
modelling of data which is dense in time but sparse in space, obtained from a
split panel design, the most feasible approach to covering space and time with
limited equipment. The data are hourly averaged particle number concentration
(PNC) and were collected, as part of the Ultrafine Particles from Transport
Emissions and Child Health (UPTECH) project. Two weeks of continuous
measurements were taken at each of a number of government primary schools in
the Brisbane Metropolitan Area. The monitoring equipment was taken to each
school sequentially. The school data are augmented by data from long term
monitoring stations at three locations in Brisbane, Australia.
Fitting the model helps describe the spatial and temporal variability at a
subset of the UPTECH schools and the long-term monitoring sites. The temporal
variation is modelled hierarchically with penalised random walk terms, one
common to all sites and a term accounting for the remaining temporal trend at
each site. Parameter estimates and their uncertainty are computed in a
computationally efficient approximate Bayesian inference environment, R-INLA.
The temporal part of the model explains daily and weekly cycles in PNC at the
schools, which can be used to estimate the exposure of school children to
ultrafine particles (UFPs) emitted by vehicles. At each school and long-term
monitoring site, peaks in PNC can be attributed to the morning and afternoon
rush hour traffic and new particle formation events. The spatial component of
the model describes the school to school variation in mean PNC at each school
and within each school ground. It is shown how the spatial model can be
expanded to identify spatial patterns at the city scale with the inclusion of
more spatial locations.Comment: Draft of this paper presented at ISBA 2012 as poster, part of UPTECH
projec
Hollingsworth v. Perry, Brief for Foreign and Comparative Law Experts Harold Hongju Koh et. al. as Amici Curiae Supporting Respondents
Brief for Foreign and Comparative Law Experts Harold Hongju Koh et al. as Amici Curiae in Support of Petitioners
Supported magnetic nanoclusters: Softlanding of Pd clusters on a MgO surface
Low-energy deposition of neutral Pd_N clusters (N=2-7 and 13) on a MgO(001)
surface F-center (FC) was studied by spin-density-functional molecular dynamics
simulations. The incident clusters are steered by an attractive "funnel"
created by the FC, resulting in adsorption of the cluster, with one of its
atoms bonded atop of the FC. The deposited Pd_2-Pd_6 clusters retain their
gas-phase structures, while for N>6 surface-commensurate isomers are
energetically more favorable. Adsorbed clusters with N > 3 are found to remain
magnetic at the surface.Comment: 5 pages, 2 figs, Phys.Rev.Lett., accepte
Investigation of DC-8 nacelle modifications to reduce fan-compressor noise in airport communities. Part 5 - Economic implications of retrofit Technical report, May 1967 - Oct. 1969
Economic impact of modifications to DC-8 aircraft nacelles to reduce fan-compressor noise - Part
Investigation of DC-8 nacelle modifications to reduce fan-compressor noise in airport communities. Part 4 - Flight acoustical and performance evaluations, for period May 1967 - October 1969
Flight acoustical and performance evaluations of DC 8 nacelle modifications to reduce fan-compressor noise in airport communitie
Molecular dynamics simulations of lead clusters
Molecular dynamics simulations of nanometer-sized lead clusters have been
performed using the Lim, Ong and Ercolessi glue potential (Surf. Sci. {\bf
269/270}, 1109 (1992)). The binding energies of clusters forming crystalline
(fcc), decahedron and icosahedron structures are compared, showing that fcc
cuboctahedra are the most energetically favoured of these polyhedral model
structures. However, simulations of the freezing of liquid droplets produced a
characteristic form of ``shaved'' icosahedron, in which atoms are absent at the
edges and apexes of the polyhedron. This arrangement is energetically favoured
for 600-4000 atom clusters. Larger clusters favour crystalline structures.
Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect
fcc Wulff particle, containing a number of parallel stacking faults. The
effects of temperature on the preferred structure of crystalline clusters below
the melting point have been considered. The implications of these results for
the interpretation of experimental data is discussed.Comment: 11 pages, 18 figues, new section added and one figure added, other
minor changes for publicatio
- …
