51 research outputs found
Neuraminidase-deficient Sendai virus HN mutants provide protection from homologous superinfection
Binding of hemagglutinin-neuraminidase proteins (HN) to sialylated receptors initiates the infection process of several paramyxoviruses, whereas later in the viral life cycle, the neuramindase (NA) activity of newly synthesized HN destroys all receptors. Prior to NA action, expressed HN has to bind the receptor. To evaluate this HN–receptor complex with respect to receptor inactivation, three temperature-sensitive Sendai virus HN mutants carrying amino acid exchanges at positions 262, 264 and/or 461 were created that uncoupled NA activity from receptor binding at 39°C. Interestingly, at elevated temperature, when there is no detectable neuramindase activity, all infected cells are protected against homologous superinfection. Mutated HN protein on the cell surface is mainly bound to sialylated cell-surface components but can be released by treatment with NA. Thus, continuous binding to HN already inactivates the receptors quantitatively. Furthermore, mutant HN bound to receptors is prevented from being incorporated into virus particles in the absence of NA. It is shown here for the first time that during paramyxoviral infection, quantitative receptor inactivation already occurs due to binding of receptors to expressed HN protein without involvement of NA and is independent of NA activity of viral progeny. NA subsequently functions in the release of HN from the complex, coupled with desialysation of receptors. These findings could have implications for further antiviral drug development
Newcastle Disease Virus in Madagascar: Identification of an Original Genotype Possibly Deriving from a Died Out Ancestor of Genotype IV
In Madagascar, Newcastle disease (ND) has become enzootic after the first documented epizootics in 1946, with recurrent annual outbreaks causing mortality up to 40%. Four ND viruses recently isolated in Madagascar were genotypically and pathotypically characterised. By phylogenetic inference based on the F and HN genes, and also full-genome sequence analyses, the NDV Malagasy isolates form a cluster distant enough to constitute a new genotype hereby proposed as genotype XI. This new genotype is presumably deriving from an ancestor close to genotype IV introduced in the island probably more than 50 years ago. Our data show also that all the previously described neutralising epitopes are conserved between Malagasy and vaccine strains. However, the potential implication in vaccination failures of specific amino acid substitutions predominantly found on surface-exposed epitopes of F and HN proteins is discussed
Disparate thermostability profiles and HN gene domains of field isolates of Newcastle disease virus from live bird markets and waterfowl in Uganda
Expression, reactivation, and purification of enzymes from <em>Haloferax volcanii</em> in <em>Escherichia coli</em>
Enzymes from extreme halophiles have potential as catalysts in biotransformations. We have developed methods for the expression in Escherichia coli and purification of two enzymes from Haloferax volcanii: dihydrolipoamide dehydrogenase and citrate synthase. Both enzymes were expressed in E. coli using the cytoplasmic expression vectors, pET3a and pET3d. Citrate synthase was soluble and inactive, whereas dihydrolipoamide dehydrogenase was expressed as inclusion bodies. Citrate synthase was reactivated following overnight incubation in 2 M KCl, and dihydrolipoamide dehydrogenase was refolded by solubilisation in 8 M urea followed by dilution into a buffer containing 2 M KCl, 10 μM FAD, 1 mM NAD, and 0.3 mM GSSG/3 mM GSH. Maximal activity was obtained after 3 days incubation at 4°C. Purification of the two active enzymes was carried out using high-resolution methods. Dihydrolipoamide dehydrogenase was purified using copper-based metal-ion affinity chromatography in the presence of 2 M KCl. Citrate synthase was recovered using dye-affinity chromatography in the presence of salt. A high yield of active enzyme was obtained in both cases. Following purification, characterisation of both recombinant proteins showed that their kinetics and salt-dependence were comparable to those of the native enzymes. Expression of active protein was attempted both by growth of E. coli in the presence of salt and betaine, and also by using periplasmic expression vectors in combination with a high salt growth media. Neither strategy was successful.</p
Cloning and overexpression in <em>Escherichia coli</em> of the gene encoding citrate synthase from the hyperthermophilic Archaeon <em>Sulfolobus solfataricus</em>
The citrate synthase (CS) gene from the hyperthermophilic Archaeon Sulfolobus solfataricus has been cloned and sequenced. The gene encodes a polypeptide of 378 amino acids with a calculated polypeptide molecular mass of 42679. High-level expression was achieved in Escherichia coli and the recombinant citrate synthase was purified to homogeneity using a heat step and dye-ligand affinity chromatography. This procedure yielded approximately 26 mg of pure CS per liter of culture, with a specific activity of 41 U/mg. The enzyme exhibited a half-life of 8 min at 95°C. A homology-modelled structure of the S. solfataricus CS has been' generated using the crystal structure of the enzyme from the thermoacidophilic Archaeon Thermoplasma acidophilum with which it displays 58% sequence identity. The modelled structure is discussed with respect to the thermostability properties of the enzyme.</p
Carbohydrate binding domain from Streptococcus pneumoniae NanA sialidase complexed with 6'-sialyllactose
Carbohydrate binding domain from Streptococcus pneumoniae NanA sialidase complexed with 3'-sialyllactose
Heterogeneity of proteinases from the hyperthermophilic archaeobacterium Pyrococcus furiosus
- …
