1,000 research outputs found
Satellite and ground radiotracking of elk
Radiotracking and monitoring of free-living animals in natural environments is providing an effective new technique for acquiring information on biological processes, including animal orientation and navigation. To test the practicability of extending the technique by using satellite systems for tracking animals, a female elk was instrumented with an electronic collar. It contained both the Interrogation Recording Location System (IRLS) transponder and a Craighead-Varney ground-tracking transmitter. The elk was successfully tracked and monitored by satellite during month of April 1970. This was the first time an animal had been tracked by satellite on the surface of the earth
Fabrication of small laterally patterned multiple quantum wells
A technique of high voltage electron beam lithography and BCI_3/Ar reactive ion etching for laterally patterning GaAs/Al_0_3 Ga_(0.7) As multiple quantum wells is described. The resulting structures were analyzed using scanning electron microscopy and a novel reflection electron microscopy technique, and their geometries are shown. Narrow columns 40 nm in diameter etched 230 nm through the quantum wells were reproducibly fabricated
Ultranarrow conducting channels defined in GaAs-AlGaAs by low-energy ion damage
We have laterally patterned the narrowest conducting wires of two-dimensional electron gas (2DEG) material reported to date. The depletion induced by low-energy ion etching of GaAs-AlGaAs 2DEG structures was used to define narrow conducting channels. We employed high voltage electron beam lithography to create a range of channel geometries with widths as small as 75 nm. Using ion beam assisted etching by Cl2 gas and Ar ions with energies as low as 150 eV, conducting channels were defined by etching only through the thin GaAs cap layer. This slight etching is sufficient to entirely deplete the underlying material without necessitating exposure of the sidewalls that results in long lateral depletion lengths. At 4.2 K, without illumination, our narrowest wires retain a carrier density and mobility at least as high as that of the bulk 2DEG and exhibit quantized Hall effects. Aharonov–Bohm oscillations are seen in rings defined by this controlled etch-damage patterning. This patterning technique holds promise for creating one-dimensional conducting wires of even smaller sizes
High-Q Nanomechanics via Destructive Interference of Elastic Waves
Mechanical dissipation poses an ubiquitous challenge to the performance of
nanomechanical devices. Here we analyze the support-induced dissipation of
high-stress nanomechanical resonators. We develop a model for this loss
mechanism and test it on silicon nitride membranes with circular and square
geometries. The measured Q-values of different harmonics present a
non-monotonic behavior which is successfully explained. For azimuthal harmonics
of the circular geometry we predict that destructive interference of the
radiated waves leads to an exponential suppression of the clamping loss in the
harmonic index. Our model can also be applied to graphene drums under high
tension.Comment: 8 pages, 1 figur
First-principles calculation of mechanical properties of Si <001> nanowires and comparison to nanomechanical theory
We report the results of first-principles density functional theory
calculations of the Young's modulus and other mechanical properties of
hydrogen-passivated Si nanowires. The nanowires are taken to have
predominantly {100} surfaces, with small {110} facets according to the Wulff
shape. The Young's modulus, the equilibrium length and the constrained residual
stress of a series of prismatic beams of differing sizes are found to have size
dependences that scale like the surface area to volume ratio for all but the
smallest beam. The results are compared with a continuum model and the results
of classical atomistic calculations based on an empirical potential. We
attribute the size dependence to specific physical structures and interactions.
In particular, the hydrogen interactions on the surface and the charge density
variations within the beam are quantified and used both to parameterize the
continuum model and to account for the discrepancies between the two models and
the first-principles results.Comment: 14 pages, 10 figure
Dissipation in nanocrystalline-diamond nanomechanical resonators
We have measured the dissipation and frequency of nanocrystalline-diamond nanomechanical resonators with resonant frequencies between 13.7 MHz and 157.3 MHz, over a temperature range of 1.4–274 K. Using both magnetomotive network analysis and a time-domain ring-down technique, we have found the dissipation in this material to have a temperature dependence roughly following T^(0.2), with Q^(–1) ≈ 10^(–4) at low temperatures. The frequency dependence of a large dissipation feature at ~35–55 K is consistent with thermal activation over a 0.02 eV barrier with an attempt frequency of 10 GHz
Surface dissipation in nanoelectromechanical systems: Unified description with the standard tunneling model and effects of metallic electrodes
By modifying and extending recent ideas [C. Seoanez et al., Europhys. Lett.
78, 60002 (2007)], a theoretical framework to describe dissipation processes in
the surfaces of vibrating micro- and nanoelectromechanical devices, thought to
be the main source of friction at low temperatures, is presented. Quality
factors as well as frequency shifts of flexural and torsional modes in doubly
clamped beams and cantilevers are given, showing the scaling with dimensions,
temperature, and other relevant parameters of these systems. Full agreement
with experimental observations is not obtained, leading to a discussion of
limitations and possible modifications of the scheme to reach a quantitative
fitting to experiments. For nanoelectromechanical systems covered with metallic
electrodes, the friction due to electrostatic interaction between the flowing
electrons and static charges in the device and substrate is also studied.Comment: 17 pages, 7 figure
Strong coupling between single-electron tunneling and nano-mechanical motion
Nanoscale resonators that oscillate at high frequencies are useful in many
measurement applications. We studied a high-quality mechanical resonator made
from a suspended carbon nanotube driven into motion by applying a periodic
radio frequency potential using a nearby antenna. Single-electron charge
fluctuations created periodic modulations of the mechanical resonance
frequency. A quality factor exceeding 10^5 allows the detection of a shift in
resonance frequency caused by the addition of a single-electron charge on the
nanotube. Additional evidence for the strong coupling of mechanical motion and
electron tunneling is provided by an energy transfer to the electrons causing
mechanical damping and unusual nonlinear behavior. We also discovered that a
direct current through the nanotube spontaneously drives the mechanical
resonator, exerting a force that is coherent with the high-frequency resonant
mechanical motion.Comment: Main text 12 pages, 4 Figures, Supplement 13 pages, 6 Figure
Coulomb Blockade in a Coupled Nanomechanical Electron Shuttle
We demonstrate single electron shuttling through two coupled nanomechanical
pendula. The pendula are realized as nanopillars etched out of the
semiconductor substrate. Coulomb blockade is found at room temperature,
allowing metrological applications. By controlling the mechanical shuttling
frequency we are able to validate the different regimes of electron shuttling
- …
