3 research outputs found

    AP-2-complex-mediated endocytosis of Drosophila Crumbs regulates polarity by antagonizing Stardust.

    No full text
    Maintenance of epithelial polarity depends on the correct localization and levels of polarity determinants. The evolutionarily conserved transmembrane protein Crumbs is crucial for the size and identity of the apical membrane, yet little is known about the molecular mechanisms controlling the amount of Crumbs at the surface. Here, we show that Crumbs levels on the apical membrane depend on a well-balanced state of endocytosis and stabilization. The adaptor protein 2 (AP-2) complex binds to a motif in the cytoplasmic tail of Crumbs that overlaps with the binding site of Stardust, a protein known to stabilize Crumbs on the surface. Preventing endocytosis by mutation of AP-2 causes expansion of the Crumbs-positive plasma membrane domain and polarity defects, which can be partially rescued by removing one copy of crumbs. Strikingly, knocking down both AP-2 and Stardust leads to the retention of Crumbs on the membrane. This study provides evidence for a molecular mechanism, based on stabilization and endocytosis, to adjust surface levels of Crumbs, which are essential for maintaining epithelial polarity

    The Endosomal Network: Mediators and Regulators of Endosome Maturation

    No full text
    Endocytosis is a means for the cell to sample its environment for nutrients and regulate plasma membrane (PM) composition and area. Whereas the majority of internalized cargo is recycled back to the cell surface, select material is sent to the lysosome for degradation. Endosomes further play major roles in central cell activities as diverse as establishment of cell polarity and signaling, lysosomal storage and immunity. The complexity of endosomal functions is reflected by the extensive changes to endosome properties as they mature. The identity of individual endosomes is influenced by the presence of specific Rab GTPases and phosphoinositides (PIPs), which coordinate membrane traffic and facilitate endosomal functions. Motors and tethers direct the endosomes to the required locations and moderate fusion with other organelles. The maintenance of the elaborate endosomal network is supported by the ER and the trans-Golgi network (TGN), which promote the exchange of membrane components, provide enzymes, and assist with signaling. Additionally, V-ATPase is emerging as an underappreciated coordinator of endosome maturation and cell signaling. The inputs of the various mediators of endosome maturation are tightly regulated and coordinated to ensure appropriate maintenance and functioning of endosomes at each stage of the maturation process. Perturbations in endosome maturation are implicated in devastating diseases, such as neurodegeneration and cancer, and the endosome maturation processes are manipulated and exploited by intracellular pathogens to meet their own needs. A greater understanding of coordination and fine-tuning of endosome maturation will help us address various pathologies more effectively

    Tied up: Does altering phosphoinositide-mediated membrane trafficking influence neurodegenerative disease phenotypes?

    No full text
    corecore