42 research outputs found

    On Security and Sparsity of Linear Classifiers for Adversarial Settings

    Full text link
    Machine-learning techniques are widely used in security-related applications, like spam and malware detection. However, in such settings, they have been shown to be vulnerable to adversarial attacks, including the deliberate manipulation of data at test time to evade detection. In this work, we focus on the vulnerability of linear classifiers to evasion attacks. This can be considered a relevant problem, as linear classifiers have been increasingly used in embedded systems and mobile devices for their low processing time and memory requirements. We exploit recent findings in robust optimization to investigate the link between regularization and security of linear classifiers, depending on the type of attack. We also analyze the relationship between the sparsity of feature weights, which is desirable for reducing processing cost, and the security of linear classifiers. We further propose a novel octagonal regularizer that allows us to achieve a proper trade-off between them. Finally, we empirically show how this regularizer can improve classifier security and sparsity in real-world application examples including spam and malware detection

    Overcoming skepticism with education: interacting influences of worldview and climate change knowledge on perceived climate change risk among adolescents

    Get PDF
    Abstract Though many climate literacy efforts attempt to communicate climate change as a risk, these strategies may be ineffective because among adults, worldview rather than scientific understanding largely drives climate change risk perceptions. Further, increased science literacy may polarize worldview-driven perceptions, making some climate literacy efforts ineffective among skeptics. Because worldviews are still forming in the teenage years, adolescents may represent a more receptive audience. This study examined how worldview and climate change knowledge related to acceptance of anthropogenic global warming (AGW) and in turn, climate change risk perception among middle school students in North Carolina, USA (n=387). We found respondents with individualistic worldviews were 16.1 percentage points less likely to accept AGW than communitarian respondents at median knowledge levels, mirroring findings in similar studies among adults. The interaction between knowledge and worldview, however, was opposite from previous studies among adults, because increased climate change knowledge was positively related to acceptance of AGW among both groups, and had a stronger positive relationship among individualists. Though individualists were 24.1 Climatic Chang

    Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery

    Get PDF
    Background: Automated phenotyping technologies are continually advancing the breeding process. However, collecting various secondary traits throughout the growing season and processing massive amounts of data still take great efforts and time. Selecting a minimum number of secondary traits that have the maximum predictive power has the potential to reduce phenotyping efforts. The objective of this study was to select principal features extracted from UAV imagery and critical growth stages that contributed the most in explaining winter wheat grain yield. Five dates of multispectral images and seven dates of RGB images were collected by a UAV system during the spring growing season in 2018. Two classes of features (variables), totaling to 172 variables, were extracted for each plot from the vegetation index and plant height maps, including pixel statistics and dynamic growth rates. A parametric algorithm, LASSO regression (the least angle and shrinkage selection operator), and a non-parametric algorithm, random forest, were applied for variable selection. The regression coefficients estimated by LASSO and the permutation importance scores provided by random forest were used to determine the ten most important variables influencing grain yield from each algorithm. Results: Both selection algorithms assigned the highest importance score to the variables related with plant height around the grain filling stage. Some vegetation indices related variables were also selected by the algorithms mainly at earlier to mid growth stages and during the senescence. Compared with the yield prediction using all 172 variables derived from measured phenotypes, using the selected variables performed comparable or even better. We also noticed that the prediction accuracy on the adapted NE lines (r = 0.58–0.81) was higher than the other lines (r = 0.21–0.59) included in this study with different genetic backgrounds. Conclusions: With the ultra-high resolution plot imagery obtained by the UAS-based phenotyping we are now able to derive more features, such as the variation of plant height or vegetation indices within a plot other than just an averaged number, that are potentially very useful for the breeding purpose. However, too many features or variables can be derived in this way. The promising results from this study suggests that the selected set from those variables can have comparable prediction accuracies on the grain yield prediction than the full set of them but possibly resulting in a better allocation of efforts and resources on phenotypic data collection and processing

    Quantile regression for overdispersed count data: a hierarchical method

    Get PDF
    Abstract Generalized Poisson regression is commonly applied to overdispersed count data, and focused on modelling the conditional mean of the response. However, conditional mean regression models may be sensitive to response outliers and provide no information on other conditional distribution features of the response. We consider instead a hierarchical approach to quantile regression of overdispersed count data. This approach has the benefits of effective outlier detection and robust estimation in the presence of outliers, and in health applications, that quantile estimates can reflect risk factors. The technique is first illustrated with simulated overdispersed counts subject to contamination, such that estimates from conditional mean regression are adversely affected. A real application involves ambulatory care sensitive emergency admissions across 7518 English patient general practitioner (GP) practices. Predictors are GP practice deprivation, patient satisfaction with care and opening hours, and region. Impacts of deprivation are particularly important in policy terms as indicating effectiveness of efforts to reduce inequalities in care sensitive admissions. Hierarchical quantile count regression is used to develop profiles of central and extreme quantiles according to specified predictor combinations

    Noncrossing quantile regression curve estimation

    No full text
    Since quantile regression curves are estimated individually, the quantile curves can cross, leading to an invalid distribution for the response. A simple constrained version of quantile regression is proposed to avoid the crossing problem for both linear and nonparametric quantile curves. A simulation study and a reanalysis of tropical cyclone intensity data shows the usefulness of the procedure. Asymptotic properties of the estimator are equivalent to the typical approach under standard conditions, and the proposed estimator reduces to the classical one if there is no crossing. The performance of the constrained estimator has shown significant improvement by adding smoothing and stability across the quantile levels. Copyright 2010, Oxford University Press.

    A comprehensive approach to haplotype-specific analysis by penalized likelihood

    No full text
    Haplotypes can hold key information to understand the role of candidate genes in disease etiology. However, standard haplotype analysis has yet been able to fully reveal the information retained by haplotypes. In most analysis, haplotype inference focuses on relative effects compared with an arbitrarily chosen baseline haplotype. It does not depict the effect structure unless an additional inference procedure is used in a secondary post hoc analysis, and such analysis tends to be lack of power. In this study, we propose a penalized regression approach to systematically evaluate the pattern and structure of the haplotype effects. By specifying an L1 penalty on the pairwise difference of the haplotype effects, we present a model-based haplotype analysis to detect and to characterize the haplotypic association signals. The proposed method avoids the need to choose a baseline haplotype; it simultaneously carries out the effect estimation and effect comparison of all haplotypes, and outputs the haplotype group structure based on their effect size. Finally, our penalty weights are theoretically designed to balance the likelihood and the penalty term in an appropriate manner. The proposed method can be used as a tool to comprehend candidate regions identified from a genome or chromosomal scan. Simulation studies reveal the better abilities of the proposed method to identify the haplotype effect structure compared with the traditional haplotype association methods, demonstrating the informativeness and powerfulness of the proposed method
    corecore