18,199 research outputs found
The dissociation of subjective measures of mental workload and performance
Dissociation between performance and subjective workload measures was investigated in the theoretical framework of the multiple resources model. Subjective measures do not preserve the vector characteristics in the multidimensional space described by the model. A theory of dissociation was proposed to locate the sources that may produce dissociation between the two workload measures. According to the theory, performance is affected by every aspect of processing whereas subjective workload is sensitive to the amount of aggregate resource investment and is dominated by the demands on the perceptual/central resources. The proposed theory was tested in three experiments. Results showed that performance improved but subjective workload was elevated with an increasing amount of resource investment. Furthermore, subjective workload was not as sensitive as was performance to differences in the amount of resource competition between two tasks. The demand on perceptual/central resources was found to be the most salient component of subjective workload. Dissociation occurred when the demand on this component was increased by the number of concurrent tasks or by the number of display elements. However, demands on response resources were weighted in subjective introspection as much as demands on perceptual/central resources. The implications of these results for workload practitioners are described
Average and worst-case specifications of precipitating auroral electron environment
The precipitation electrons in the auroral environment are highly variable in their energy and intensity in both space and time. As such they are a source of potential hazard to the operation of the Space Shuttle and other large spacecraft operating in polar orbit. In order to assess these hazards both the average and extreme states of the precipitating electrons must be determined. Work aimed at such a specification is presented. First results of a global study of the average characteristics are presented. In this study the high latitude region was divided into spatial elements in magnetic local time and corrected geomagnetic latitude. The average electron spectrum was then determined in each spatial element for seven different levels of activity as measured by K sub p using an extremely large data set of auroral observations. Second a case study of an extreme auroral electron environment is presented, in which the electrons are accelerated through field aligned potential as high as 30,000 volts and in which the spacecraft is seen to charge negatively to a potential approaching .5 kilovolts
Heat transfer in rotating serpentine passages with trips skewed to the flow
Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi-pass, heat transfer model with both radially inward and outward flow. Trip strips, skewed at 45 deg to the flow direction, were machined on the leading and trailing surfaces of the radial coolant passages. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature, rotation number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from similar stationary and rotating models with smooth walls and with trip strips normal to the flow direction. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation and buoyancy, decreased to as low as 40 percent of the value without rotation. However, the maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels previously obtained with the smooth wall models. It was concluded that (1) both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips, (2) the effects of rotation are markedly different depending upon the flow direction, and (3) the heat transfer with skewed trip strips is less sensitive to buoyancy than the heat transfer in models with either smooth or normal trips. Therefore, skewed trip strips rather than normal trip strips are recommended and geometry-specific tests are required for accurate design information
Comparison of cooling effectiveness of turbine vanes with and without film cooling
The cooling effectiveness of three film-cooled vanes were compared to the cooling effectiveness of two non-film-cooled vanes. The comparison indicated that, for the vane configurations and test conditions examined, film cooling had an adverse effect near the suction-surface trailing edge of the vanes. Film cooling was found to be beneficial on the pressure surface of the vanes
Scattering-free plasmonic optics with anisotropic metamaterials
We develop an approach to utilize anisotropic metamaterials to solve one of
the fundamental problems of modern plasmonics -- parasitic scattering of
surface waves into free-space modes, opening the road to truly two-dimensional
plasmonic optics. We illustrate the developed formalism on examples of
plasmonic refractor and plasmonic crystal, and discuss limitations of the
developed technique and its possible applications for sensing and imaging
structures, high-performance mode couplers, optical cloaking structures, and
dynamically reconfigurable electro-plasmonic circuits
Heat transfer results and operational characteristics of the NASA Lewis Research Center Hot Section Cascade Test Facility
The NASA Lewis Research Center gas turbine hot section test facility has been developed to provide a real-engine environment with well known boundary conditions for the aerothermal performance evaluation/verification of computer design codes. The initial aerothermal research data obtained are presented and the operational characteristics of the facility are discussed. This facility is capable of testing at temperatures and pressures up to 1600 K and 18 atm which corresponds to a vane exit Reynolds number range of 0.5x10(6) to 2.5x10(6) based on vane chord. The component cooling air temperature can be independently modulated between 330 and 700 K providing gas-to-coolant temperature ratios similar to current engine application. Research instrumentation of the test components provide conventional pressure and temperature measurements as well as metal temperatures measured by IR-photography. The primary data acquisition mode is steady state through a 704 channel multiplexer/digitizer. The test facility was configured as an annular cascade of full coverage filmcooled vanes for the initial series of research tests
An experimental study on (2) modular symmetry in the quantum Hall system with a small spin-splitting
Magnetic-field-induced phase transitions were studied with a two-dimensional
electron AlGaAs/GaAs system. The temperature-driven flow diagram shows the
features of the (2) modular symmetry, which includes distorted
flowlines and shiftted critical point. The deviation of the critical
conductivities is attributed to a small but resolved spin splitting, which
reduces the symmetry in Landau quantization. [B. P. Dolan, Phys. Rev. B 62,
10278.] Universal scaling is found under the reduction of the modular symmetry.
It is also shown that the Hall conductivity could still be governed by the
scaling law when the semicircle law and the scaling on the longitudinal
conductivity are invalid. *corresponding author:[email protected]: The revised manuscript has been published in J. Phys.: Condens.
Matte
Dimensionality of superconductivity in the infinite-layer high-temperature cuprate Sr0.9M0.1CuO2 (M = La, Gd)
The high magnetic field phase diagram of the electron-doped infinite layer
high-temperature superconducting (high-T_c) compound Sr_{0.9}La_{0.1}CuO_2 was
probed by means of penetration depth and magnetization measurements in pulsed
fields to 60 T. An anisotropy ratio of 8 was detected for the upper critical
fields with H parallel (H_{c2}^{ab}) and perpendicular (H_{c2}^c) to the CuO_2
planes, with H_{c2}^{ab} extrapolating to near the Pauli paramagnetic limit of
160 T. The longer superconducting coherence length than the lattice constant
along the c-axis indicates that the orbital degrees of freedom of the pairing
wavefunction are three dimensional. By contrast, low-field magnetization and
specific heat measurements of Sr_{0.9}Gd_{0.1}CuO_2 indicate a coexistence of
bulk s-wave superconductivity with large moment Gd paramagnetism close to the
CuO_2 planes, suggesting a strong confinement of the spin degrees of freedom of
the Cooper pair to the CuO_2 planes. The region between H_{c2}^{ab} and the
irreversibility line in the magnetization, H_{irr}^{ab}, is anomalously large
for an electron-doped high-T_c cuprate, suggesting the existence of additional
quantum fluctuations perhaps due to a competing spin-density wave order.Comment: 4 pages, 4 figures, submitted to Phys. Rev. B, Rapid Communications
(2004). Corresponding author: Nai-Chang Yeh (E-mail: [email protected]
Macroscopic evidence for quantum criticality and field-induced quantum fluctuations in cuprate superconductors
We present macroscopic experimental evidence for field-induced microscopic
quantum fluctuations in different hole- and electron-type cuprate
superconductors with varying doping levels and numbers of CuO layers per
unit cell. The significant suppression of the zero-temperature in-plane
magnetic irreversibility field relative to the paramagnetic field in all
cuprate superconductors suggests strong quantum fluctuations due to the
proximity of the cuprates to quantum criticality.Comment: 3 figures. To appear in Phys. Rev. B, Rapid Communications (2007).
For correspondence, contact: Nai-Chang Yeh (e-mail: [email protected]
- …
