206 research outputs found

    Warped compactification on Abelian vortex in six dimensions

    Get PDF
    We consider the possibility of localizing gravity on a Nielsen-Olesen vortex in the context of the Abelian Higgs model. The vortex lives in a six-dimensional space-time with negative bulk cosmological constant. In this model we find a region of the parameter space leading, simultaneously, to warped compactification and to regular space-time geometry. A thin defect limit is studied. Regular solutions describing warped compactifications in the case of higher winding number are also presented.Comment: LaTeX, 39 pages, 21 figures, final version appeared in Nucl. Phys.

    The Origin of Spontaneous Symmetry Breaking in Theories with Large Extra Dimensions

    Get PDF
    We suggest that the electroweak Higgs particles can be identified with extra-dimensional components of the gauge fields, which after compactification on a certain topologically non-trivial background become tachyonic and condense. If the tachyonic mass is a tree level effect, the natural scale of the gauge symmetry breaking is set by the inverse radius of the internal space, which, in case of the electroweak symmetry, must be around 1/\sim 1/TeV. We discuss the possibility of a vanishing tree level mass for the Higgs. In such a scenario the tachyonic mass can be induced by quantum loops and can be naturally smaller than the compactification scale. We give an example in which this possibility can be realized. Starting from an Einstein--Yang--Mills theory coupled to fermions in 10-dimensions, we are able to reproduce the spectrum of the Standard Model like chiral fermions and Higgs type scalars in 4-dimensions upon compactifying on CP1×CP2{\mathbb{C}}P^1\times {\mathbb{C}}P^2. The existence of a monopole solution on CP1{\mathbb{C}}P^1 and a self dual U(1) instanton on CP2{\mathbb{C}}P^2 are essential in obtaining chiral fermions as well as tachyonic or massless scalars in 4-dimensions. We give a simple rule which helps us to identify the presence of tachyons on the monopole background on S2S^2.Comment: 33 pages. Version accepted for publication in Phys.Rev.

    The Fuzzy Ginsparg-Wilson Algebra: A Solution of the Fermion Doubling Problem

    Get PDF
    The Ginsparg-Wilson algebra is the algebra underlying the Ginsparg-Wilson solution of the fermion doubling problem in lattice gauge theory. The Dirac operator of the fuzzy sphere is not afflicted with this problem. Previously we have indicated that there is a Ginsparg-Wilson operator underlying it as well in the absence of gauge fields and instantons. Here we develop this observation systematically and establish a Dirac operator theory for the fuzzy sphere with or without gauge fields, and always with the Ginsparg-Wilson algebra. There is no fermion doubling in this theory. The association of the Ginsparg-Wilson algebra with the fuzzy sphere is surprising as the latter is not designed with this algebra in mind. The theory reproduces the integrated U(1)_A anomaly and index theory correctly.Comment: references added, typos corrected, section 4.2 simplified. Report.no: SU-4252-769, DFUP-02-1

    Topological Charge and The Spectrum of Exactly Massless Fermions on the Lattice

    Full text link
    The square root of the positive definite hermitian operator DwDwD_w^{\dagger} D_w in Neuberger's proposal of exactly massless quarks on the lattice is implemented by the recursion formula Yk+1=1/2(Yk+DwDwYk1)Y_{k+1} = {1/2} (Y_k + D_w^{\dagger} D_w Y_k^{-1}) with Y_0 = \Id, where Yk2Y_k^2 converges to DwDwD_w^{\dagger} D_w quadratically. The spectrum of the lattice Dirac operator for single massless fermion in two dimensional background U(1) gauge fields is investigated. For smooth background gauge fields with non-zero topological charge, the exact zero modes with definite chirality are reproduced to a very high precision on a finite lattice and the Index Theorem is satisfied exactly. The fermionic determinants are also computed and they are in good agreement with the continuum exact solution.Comment: 18 pages (LaTeX), 2 figures (EPS

    Global obstructions to gauge-invariance in chiral gauge theory on the lattice

    Get PDF
    It is shown that certain global obstructions to gauge-invariance in chiral gauge theory, described in the continuum by Alvarez-Gaume and Ginsparg, are exactly reproduced on the lattice in the Overlap formulation at small non-zero lattice spacing (i.e. close to the classical continuum limit). As a consequence, the continuum anomaly cancellation condition dRabc=0d_R^{abc}=0 is seen to be a necessary (although not necessarily sufficient) condition for anomaly cancellation on the lattice in the Overlap formulation.Comment: 31 pages, latex. v4: A few minor corrections, to appear in Nucl. Phys.

    Manifestly Gauge Covariant Treatment of Lattice Chiral Fermions. II

    Get PDF
    We propose a new formulation of chiral fermions on a lattice, on the basis of a lattice extension of the covariant regularization scheme in continuum field theory. The species doublers do not emerge. The real part of the effective action is just one half of that of Dirac-Wilson fermion and is always gauge invariant even with a finite lattice spacing. The gauge invariance of the imaginary part, on the other hand, sets a severe constraint which is a lattice analogue of the gauge anomaly free condition. For real gauge representations, the imaginary part identically vanishes and the gauge invariance becomes exact.Comment: 15 pages, PHYZZX. The title is changed. The final version to appear in Phys. Rev.

    Anomaly-Free Supersymmetric Models in Six Dimensions

    Get PDF
    The conditions for the cancellation of all gauge, gravitational, and mixed anomalies of N=1N=1 supersymmetric models in six dimensions are reviewed and illustrated by a number of examples. Of particular interest are models that cannot be realized perturbatively in string theory. An example of this type, which we verify satisfies the anomaly cancellation conditions, is the K3 compactification of the SO(32)SO(32) theory with small instantons recently proposed by Witten. When the instantons coincide it has gauge group SO(32)×Sp(24)SO(32) \times Sp(24). Two new classes of models, for which non-perturbative string constructions are not yet known, are also presented. They have gauge groups SO(2n+8)×Sp(n)SO(2n+8)\times Sp(n) and SU(n)×SU(n)SU(n)\times SU(n), where nn is an arbitrary positive integer.Comment: 14 pages, latex; A paragraph in section 4 has been replace

    Gravitational Lorentz anomaly from the overlap formula in 2-dimensions

    Get PDF
    In this letter we show that the overlap formulation of chiral gauge theories correctly reproduces the gravitational Lorentz anomaly in 2-dimensions. This formulation has been recently suggested as a solution to the fermion doubling problem on the lattice. The well known response to general coordinate transformations of the effective action of Weyl fermions coupled to gravity in 2-dimensions can also be recovered.Comment: 7 pages, late

    Domain wall fermion and CP symmetry breaking

    Get PDF
    We examine the CP properties of chiral gauge theory defined by a formulation of the domain wall fermion, where the light field variables qq and qˉ\bar q together with Pauli-Villars fields QQ and Qˉ\bar Q are utilized. It is shown that this domain wall representation in the infinite flavor limit N=N=\infty is valid only in the topologically trivial sector, and that the conflict among lattice chiral symmetry, strict locality and CP symmetry still persists for finite lattice spacing aa. The CP transformation generally sends one representation of lattice chiral gauge theory into another representation of lattice chiral gauge theory, resulting in the inevitable change of propagators. A modified form of lattice CP transformation motivated by the domain wall fermion, which keeps the chiral action in terms of the Ginsparg-Wilson fermion invariant, is analyzed in detail; this provides an alternative way to understand the breaking of CP symmetry at least in the topologically trivial sector. We note that the conflict with CP symmetry could be regarded as a topological obstruction. We also discuss the issues related to the definition of Majorana fermions in connection with the supersymmetric Wess-Zumino model on the lattice.Comment: 33 pages. Note added and a new reference were added. Phys. Rev.D (in press
    corecore