742 research outputs found
Lines pinning lines
A line g is a transversal to a family F of convex polytopes in 3-dimensional
space if it intersects every member of F. If, in addition, g is an isolated
point of the space of line transversals to F, we say that F is a pinning of g.
We show that any minimal pinning of a line by convex polytopes such that no
face of a polytope is coplanar with the line has size at most eight. If, in
addition, the polytopes are disjoint, then it has size at most six. We
completely characterize configurations of disjoint polytopes that form minimal
pinnings of a line.Comment: 27 pages, 10 figure
Hadron Spectroscopy with Dynamical Chirally Improved Fermions
We simulate two dynamical, mass degenerate light quarks on 16^3x32 lattices
with a spatial extent of 2.4 fm using the Chirally Improved Dirac operator. The
simulation method, the implementation of the action and signals of
equilibration are discussed in detail. Based on the eigenvalues of the Dirac
operator we discuss some qualitative features of our approach. Results for
ground state masses of pseudoscalar and vector mesons as well as for the
nucleon and delta baryons are presented.Comment: 26 pages, 17 figures, 10 table
The consequences of SU(3) colorsingletness, Polyakov Loop and Z(3) symmetry on a quark-gluon gas
Based on quantum statistical mechanics we show that the color singlet
ensemble of a quark-gluon gas exhibits a symmetry through the normaized
character in fundamental representation and also becomes equivalent, within a
stationary point approximation, to the ensemble given by Polyakov Loop. Also
Polyakov Loop gauge potential is obtained by considering spatial gluons along
with the invariant Haar measure at each space point. The probability of the
normalized character in vis-a-vis Polyakov Loop is found to be maximum
at a particular value exhibiting a strong color correlation. This clearly
indicates a transition from a color correlated to uncorrelated phase or
vise-versa. When quarks are included to the gauge fields, a metastable state
appears in the temperature range due to the
explicit symmetry breaking in the quark-gluon system. Beyond
MeV the metastable state disappears and stable domains appear. At low
temperature a dynamical recombination of ionized color charges to a
color singlet confined phase is evident along with a confining
background that originates due to circulation of two virtual spatial gluons but
with conjugate phases in a closed loop. We also discuss other possible
consequences of the center domains in the color deconfined phase at high
temperature.Comment: Version published in J. Phys.
Multimodal imaging of pancreatic beta cells in vivo by targeting transmembrane protein 27 (TMEM27)
Aims/hypothesis: Non-invasive diagnostic tools specific for pancreatic beta cells will have a profound impact on our understanding of the pathophysiology of metabolic diseases such as diabetes. The objective of this study was to use molecular imaging probes specifically targeting beta cells on human samples and animal models using state-of-the-art imaging modalities (fluorescence and PET) with preclinical and clinical perspective. Methods: We generated a monoclonal antibody, 8/9-mAb, targeting transmembrane protein 27 (TMEM27; a surface N-glycoprotein that is highly expressed on beta cells), compared its expression in human and mouse pancreas, and demonstrated beta cell-specific binding in both. In vivo imaging was performed in mice with subcutaneous insulinomas overexpressing the human TMEM27 gene, or transgenic mice with beta cell-specific hTMEM27 expression under the control of rat insulin promoter (RIP-hTMEM27-tg), using fluorescence and radioactively labelled antibody, followed by tissue ex vivo analysis and fluorescence microscopy. Results: Fluorescently labelled 8/9-mAb showed beta cell-specific staining on human and mouse pancreatic sections. Real-time PCR on islet cDNA indicated about tenfold higher expression of hTMEM27 in RIP-hTMEM27-tg mice than in humans. In vivo fluorescence and PET imaging in nude mice with insulinoma xenografts expressing hTMEM27 showed high 8/9-mAb uptake in tumours after 72h. Antibody homing was also observed in beta cells of RIP-hTMEM27-tg mice by in vivo fluorescence imaging. Ex vivo analysis of intact pancreas and fluorescence microscopy in beta cells confirmed these findings. Conclusions/interpretation: hTMEM27 constitutes an attractive target for in vivo visualisation of pancreatic beta cells. Studies in mouse insulinoma models and mice expressing hTMEM27 demonstrate the feasibility of beta cell-targeted in vivo imaging, which is attractive for preclinical investigations and holds potential in clinical diagnostic
The strong thirteen spheres problem
The thirteen spheres problem is asking if 13 equal size nonoverlapping
spheres in three dimensions can touch another sphere of the same size. This
problem was the subject of the famous discussion between Isaac Newton and David
Gregory in 1694. The problem was solved by Schutte and van der Waerden only in
1953.
A natural extension of this problem is the strong thirteen spheres problem
(or the Tammes problem for 13 points) which asks to find an arrangement and the
maximum radius of 13 equal size nonoverlapping spheres touching the unit
sphere. In the paper we give a solution of this long-standing open problem in
geometry. Our computer-assisted proof is based on a enumeration of the
so-called irreducible graphs.Comment: Modified lemma 2, 16 pages, 12 figures. Uploaded program packag
The Fermat-Torricelli problem in normed planes and spaces
We investigate the Fermat-Torricelli problem in d-dimensional real normed
spaces or Minkowski spaces, mainly for d=2. Our approach is to study the
Fermat-Torricelli locus in a geometric way. We present many new results, as
well as give an exposition of known results that are scattered in various
sources, with proofs for some of them. Together, these results can be
considered to be a minitheory of the Fermat-Torricelli problem in Minkowski
spaces and especially in Minkowski planes. This demonstrates that substantial
results about locational problems valid for all norms can be found using a
geometric approach
The sign problem across the QCD phase transition
The average phase factor of the QCD fermion determinant signals the strength
of the QCD sign problem. We compute the average phase factor as a function of
temperature and baryon chemical potential using a two-flavor NJL model. This
allows us to study the strength of the sign problem at and above the chiral
transition. It is discussed how the anomaly affects the sign problem.
Finally, we study the interplay between the sign problem and the endpoint of
the chiral transition.Comment: 9 pages and 9 fig
Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response
MN and CP were supported by the Wellcome Trust (www.wellcome.ac.uk) Institutional Strategic Support Fund and CP was supported by the Deutsche Forschungsgemeinschaft (PA 815/2-1; www.dfg.de).The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.Publisher PDFPeer reviewe
Acute Sets of Exponentially Optimal Size
We present a simple construction of an acute set of size (Formula presented.) in (Formula presented.) for any dimension d. That is, we explicitly give (Formula presented.) points in the d-dimensional Euclidean space with the property that any three points form an acute triangle. It is known that the maximal number of such points is less than (Formula presented.). Our result significantly improves upon a recent construction, due to Dmitriy Zakharov, with size of order (Formula presented.) where (Formula presented.) is the golden ratio. © 2018 Springer Science+Business Media, LLC, part of Springer Natur
- …
