668 research outputs found
Definition of Naturally Processed Peptides Reveals Convergent Presentation of Autoantigenic Topoisomerase I Epitopes in Scleroderma.
ObjectiveAutoimmune responses to DNA topoisomerase I (topo I) are found in a subset of scleroderma patients who are at high risk for interstitial lung disease (ILD) and mortality. Anti-topo I antibodies (ATAs) are associated with specific HLA-DRB1 alleles, and the frequency of HLA-DR-restricted topo I-specific CD4+ T cells is associated with the presence, severity, and progression of ILD. Although this strongly implicates the presentation of topo I peptides by HLA-DR in scleroderma pathogenesis, the processing and presentation of topo I has not been studied.MethodsWe developed a natural antigen processing assay (NAPA) to identify putative CD4+ T cell epitopes of topo I presented by monocyte-derived dendritic cells (mo-DCs) from 6 ATA-positive patients with scleroderma. Mo-DCs were pulsed with topo I protein, HLA-DR-peptide complexes were isolated, and eluted peptides were analyzed by mass spectrometry. We then examined the ability of these naturally presented peptides to induce CD4+ T cell activation in 11 ATA-positive and 11 ATA-negative scleroderma patients.ResultsWe found that a common set of 10 topo I epitopes was presented by Mo-DCs from scleroderma patients with diverse HLA-DR variants. Sequence analysis revealed shared peptide-binding motifs within the HLA-DRβ chains of ATA-positive patients and a subset of topo I epitopes with distinct sets of anchor residues capable of binding to multiple different HLA-DR variants. The NAPA-derived epitopes elicited robust CD4+ T cell responses in 73% of ATA-positive patients (8 of 11), and the number of epitopes recognized correlated with ILD severity (P = 0.025).ConclusionThese findings mechanistically implicate the presentation of a convergent set of topo I epitopes in the development of scleroderma
Fine material in grain
Fine material in grain: an overview / Richard Stroshine -- Factors that affect the costs of fines in the corn export market / Lowell D. Hill, Mack Leath -- Effects of fine material on mold growth in grain / David B. Sauer, Richard A. Meronuck, John Tuite -- Effects of fine material on insect infestation: a review / Paul W. Flinn, William H. McGaughey, Wendell E. Burkholder -- Reducing or controlling damage to grain from handling: a review / Charles R. Martin, George H. Foster -- Evaluating grain for potential production of fine material - breakage susceptibility testing / Steven R. Eckhoff -- Genotypic differences in breakage susceptibility of corn and soybeans -- M. R. Paulsen, L. L. Darrah, R. L. Stroshin
Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities
Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of American 112 (2015): 13184-13189, doi: 10.1073/pnas.1511474112
.Hundreds of organic chemicals are utilized during natural gas extraction via high volume
hydraulic fracturing (HVHF). However, it is unclear if these chemicals, injected into deep
shale horizons, reach shallow groundwater aquifers and impact local water quality, either
from deep underground injection sites or from the surface or shallow subsurface. Here,
we report detectable levels of organic compounds in shallow groundwater samples from
private residential wells overlying the Marcellus Shale in northeastern Pennsylvania.
Analyses of purgeable and extractable organic compounds from 64 groundwater samples
revealed trace levels of volatile organic compounds, well below the Environmental
Protection Agency’s maximum contaminant levels, and low levels of both gasoline range
(GRO; 0-8 ppb) and diesel range organic compounds (DRO; 0-157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl)phthalate, which is a disclosed
HVHF additive, that was notably absent in a representative geogenic water sample and
field blanks. Pairing these analyses with 1) inorganic chemical fingerprinting of deep
saline groundwater, 2) characteristic noble gas isotopes, and 3) spatial relationships
between active shale gas extraction wells and wells with disclosed environmental health
and safety (EHS) violations, we differentiate between a chemical signature associated
with naturally occurring saline groundwater and a one associated with alternative
anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a
transport mechanism of DRO to groundwater via accidental release of fracturing fluid
chemicals derived from the surface rather than subsurface flow of these fluids from the
underlying shale formation.The authors thank Duke University’s Pratt School of Engineering
and the National Science Foundation’s CBET Grant Number 1336702 and NSF EAGER
(EAR-1249255) for financial support.2016-04-1
Immunization with apical membrane antigen 1 confers sterile infection-blocking immunity against Plasmodium sporozoite challenge in a rodent model
Apical membrane antigen 1 (AMA-1) is a leading blood-stage malaria vaccine candidate. Consistent with a key role in erythrocytic invasion, AMA-1-specific antibodies have been implicated in AMA-1-induced protective immunity. AMA-1 is also expressed in sporozoites and in mature liver schizonts where it may be a target of protective cell-mediated immunity. Here, we demonstrate for the first time that immunization with AMA-1 can induce sterile infection-blocking immunity against Plasmodium sporozoite challenge in 80% of immunized mice. Significantly higher levels of gamma interferon (IFN-γ)/interleukin-2 (IL-2)/tumor necrosis factor (TNF) multifunctional T cells were noted in immunized mice than in control mice. We also report the first identification of minimal CD8 and CD4 T cell epitopes on Plasmodium yoelii AMA-1. These data establish AMA-1 as a target of both preerythrocytic- and erythrocytic-stage protective immune responses and validate vaccine approaches designed to induce both cellular and humoral immunity
Patient-directed self-management of pain (PaDSMaP) compared to treatment as usual following total knee replacement; a randomised controlled trial
Background Self-administration of medicines by patients whilst in hospital is being increasingly promoted despite little evidence to show the risks and benefits. Pain control after total knee replacement (TKR) is known to be poor. The aim of the study was to determine if patients operated on with a TKR who self-medicate their oral analgesics in the immediate post-operative period have better pain control than those who receive their pain control by nurse-led drug rounds (Treatment as Usual (TAU)). Methods A prospective, parallel design, open-label, randomised controlled trial comparing pain control in patient-directed self-management of pain (PaDSMaP) with nurse control of oral analgesia (TAU) after a TKR. Between July 2011 and March 2013, 144 self-medicating adults were recruited at a secondary care teaching hospital in the UK. TAU patients (n = 71) were given medications by a nurse after their TKR. PaDSMaP patients (n = 73) took oral medications for analgesia and co-morbidities after two 20 min training sessions reinforced with four booklets. Primary outcome was pain (100 mm visual analogue scale (VAS)) at 3 days following TKR surgery or at discharge (whichever came soonest). Seven patients did not undergo surgery for reasons unrelated to the study and were excluded from the intention-to-treat (ITT) analysis. Results ITT analysis did not detect any significant differences between the two groups’ pain scores. A per protocol (but underpowered) analysis of the 60% of patients able to self-medicate found reduced pain compared to the TAU group at day 3/discharge, (VAS -9.9 mm, 95% CI -18.7, − 1.1). One patient in the self-medicating group over-medicated but suffered no harm. Conclusion Self-medicating patients did not have better (lower) pain scores compared to the nurse-managed patients following TKR. This cohort of patients were elderly with multiple co-morbidities and may not be the ideal target group for self-medication
Impact of distinct poxvirus infections on the specificities and functionalities of CD4+ T cell responses.
UNLABELLED: The factors that determine CD4+ T cell (TCD4+) specificities, functional capacity, and memory persistence in response to complex pathogens remain unclear. We explored these parameters in the C57BL/6 mouse through comparison of two highly related (\u3e92% homology) poxviruses: ectromelia virus (ECTV), a natural mouse pathogen, and vaccinia virus (VACV), a heterologous virus that nevertheless elicits potent immune responses. In addition to elucidating several previously unidentified major histocompatibility complex class II (MHC-II)-restricted epitopes, we observed many qualitative and quantitative differences between the TCD4+ repertoires, including responses not elicited by VACV despite complete sequence conservation. In addition, we observed functional heterogeneity between ECTV- and VACV-specific TCD4+ at both a global and individual epitope level, particularly greater expression of the cytolytic marker CD107a from TCD4+ following ECTV infection. Most striking were differences during the late memory phase where, in contrast to ECTV, VACV infection failed to elicit measurable epitope-specific TCD4+ as determined by intracellular cytokine staining. These findings illustrate the strong influence of epitope-extrinsic factors on TCD4+ responses and memory.
IMPORTANCE: Much of our understanding concerning host-pathogen relationships in the context of poxvirus infections stems from studies of VACV in mice. However, VACV is not a natural mouse pathogen, and therefore, the relevance of results obtained using this model may be limited. Here, we explored the MHC class II-restricted TCD4+ repertoire induced by mousepox (ECTV) infection and the functional profile of the responding epitope-specific TCD4+, comparing these results to those induced by VACV infection under matched conditions. Despite a high degree of homology between the two viruses, we observed distinct specificity and functional profiles of TCD4+ responses at both acute and memory time points, with VACV-specific TCD4+ memory being notably compromised. These data offer insight into the impact of epitope-extrinsic factors on the resulting TCD4+ responses
Noble Gases Identify the Mechanisms of Fugitive Gas Contamination in Drinking-Water Wells Overlying the Marcellus and Barnett Shales
Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ13C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., 4He, 20Ne, 36Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, 4He) were significantly higher (P \u3c 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, 36Ar) were significantly lower (P \u3c 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing
COMPASS identifies T-cell subsets correlated with clinical outcomes.
Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software
Citrullination regulates pluripotency and histone H1 binding to chromatin.
Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.Cancer Research UKThis is the author accepted manuscript. The final version is available from the Nature Publishing Group via http://dx.doi.org/10.1038/nature1294
Groundwater mixing in a heterogeneous multilayer aquifer driven by geogenic CO2 fluxes: Evidence from chemical and isotopic composition of Ferrarelle waters (Riardo Plain, southern Italy)
The successful management of carbon in the Earth's crust is critical for mitigating the increase of anthropogenic CO2 in the atmosphere. Carbon Capture and Storage (CCS) requires an understanding of the behavior of carbon in the crust and the development of robust monitoring techniques to constrain the movement, mechanisms, and pathways for any potential CO2 leakage. Here, we examine an aquifer from the Riardo Plain (Campania Region, southern Italy), which serves as a suitable natural analogue for CO2 migration to the critical zone (i.e., shallow crust and aquifers) and as a case study to evaluate the geochemical processes that occur when CO2-saturated fluids mix with freshwater in shallow aquifers. We investigate the behavior of various geochemical constituents (major and trace elements, δ18O–H2O, δ13C-DIC, and Rn content). Water from this area has a high degree of mineralization (EC 2500–3000 μS/cm), high HCO3- (~2.5 g/L), is saturated with respect to CaCO3, and is enriched in alkali ions (e.g., Na+ + K+). The high degree of mineralization occurs in groundwater that discharges from the basal aquifer of the Roccamonfina volcanic edifice (~6 km NW), with vast CO2 inputs that promote host rock leaching. Superficial volcanic aquifers are recharged by fresh meteoric precipitation when groundwater flows from carbonates at the edge of the plain to aquifers hosted in the southeastern slope of the Roccamonfina volcano. The presence of normal faults in this area permits natural upwelling of CO2-rich groundwater, which locally mixes with shallow freshwater present within the upper volcanic succession. Significant (R > 0.8) linear correlations between conservative elements suggest that groundwater geochemistry is dominated by a mixture of two main endmembers: (i) deep/mineralized waters and (ii) shallow/diluted waters. The intrusion of freshwater to volcanic aquifers induces oxidation, leading to adsorption of select elements (e.g., As and Ba) onto Fe-oxyhydroxide precipitates within these aquifers. Geochemical modeling suggests that CO2 saturation approaches 3 g/L, which agrees with direct measurements of CO2 flux. We conclude that our conceptual geochemical model helps to constrain mixing of CO2 with freshwater and to diagnose the secondary geochemical processes that influence aqueous geochemistry within CO2-influenced groundwater
- …
