6,293 research outputs found
Heteranthery in Clarkia: pollen performance of dimorphic anthers contradicts expectations.
Premise of the studyWild plant species that require the services of pollen-feeding insects for reliable pollination may evolve features that attract and reward their mutualistic partners. Heterantherous species have been proposed to exhibit a "division of labor" whereby "feeding anthers" (which produce pollen that may be consumed by an insect) are distinguished from "reproductive anthers" (which produce pollen more likely to contribute to reproduction). In some heterantherous species, including Clarkia unguiculata (Onagraceae), these two anther types differ with respect to stamen length, anther size, pollen production, and pollen color.MethodsThe primary goal of this study was to test one component of the "division of labor" hypothesis by comparing the performance of the pollen produced by each type of anther in C. unguiculata. To achieve this goal, under greenhouse conditions, we hand pollinated and assessed pollen performance (using epifluorescence microscopy) within ~228 flowers.Key resultsThe pollen produced by the two anther types differed significantly with respect to both stigma and style penetration. The inner series of anthers produce pollen with higher performance than the outer series of longer, dark red anthers.ConclusionsThese findings contradict previous descriptions of the genus, reporting that the inner diminutive series of anthers in Clarkia produce "abortive and nonfunctional" pollen. We outline the future research required to demonstrate the ecological function of heteranthery in this iconic wildflower group
Langevin dynamics in crossed magnetic and electric fields: Hall and diamagnetic fluctuations
Based on the classical Langevin equation, we have re-visited the problem of
orbital motion of a charged particle in two dimensions for a normal magnetic
field crossed with or without an in-plane electric bias. We are led to two
interesting fluctuation effects: First, we obtain not only a longitudinal
"work-fluctuation" relation as expected for a barotropic type system, but also
a transverse work-fluctuation relation perpendicular to the electric bias. This
"Hall fluctuation" involves the product of the electric and the magnetic
fields. And second, for the case of harmonic confinement without bias, the
calculated probability density for the orbital magnetic moment gives non-zero
even moments, not derivable as field derivatives of the classical free energy.Comment: 4 pages, 2 figures, revised versio
Shifting with
Precision measurements at the resonance agree well with the standard
model. However, there is still a hint of a discrepancy, not so much in by
itself (which has received a great deal of attention in the past several years)
but in the forward-backward asymmetry together with . The two
are of course correlated. We explore the possibilty that these and other
effects are due to the mixing of and with one or more heavy quarks.Comment: 11 pages, 1 Figure, LaTex fil
Integrating Species Traits into Species Pools
Despite decades of research on the species‐pool concept and the recent explosion of interest in trait‐based frameworks in ecology and biogeography, surprisingly little is known about how spatial and temporal changes in species‐pool functional diversity (SPFD) influence biodiversity and the processes underlying community assembly. Current trait‐based frameworks focus primarily on community assembly from a static regional species pool, without considering how spatial or temporal variation in SPFD alters the relative importance of deterministic and stochastic assembly processes. Likewise, species‐pool concepts primarily focus on how the number of species in the species pool influences local biodiversity. However, species pools with similar richness can vary substantially in functional‐trait diversity, which can strongly influence community assembly and biodiversity responses to environmental change. Here, we integrate recent advances in community ecology, trait‐based ecology, and biogeography to provide a more comprehensive framework that explicitly considers how variation in SPFD, among regions and within regions through time, influences the relative importance of community assembly processes and patterns of biodiversity. First, we provide a brief overview of the primary ecological and evolutionary processes that create differences in SPFD among regions and within regions through time. We then illustrate how SPFD may influence fundamental processes of local community assembly (dispersal, ecological drift, niche selection). Higher SPFD may increase the relative importance of deterministic community assembly when greater functional diversity in the species pool increases niche selection across environmental gradients. In contrast, lower SPFD may increase the relative importance of stochastic community assembly when high functional redundancy in the species pool increases the influence of dispersal history or ecological drift. Next, we outline experimental and observational approaches for testing the influence of SPFD on assembly processes and biodiversity. Finally, we highlight applications of this framework for restoration and conservation. This species‐pool functional diversity framework has the potential to advance our understanding of how local‐ and regional‐scale processes jointly influence patterns of biodiversity across biogeographic regions, changes in biodiversity within regions over time, and restoration outcomes and conservation efforts in ecosystems altered by environmental change
Predicting green: really radical (plant) predictive processing
In this article we account for the way plants respond to salient features of their environment under the free-energy principle for biological systems. Biological self-organization amounts to the minimization of surprise over time. We posit that any self-organizing system must embody a generative model whose predictions ensure that (expected) free energy is minimized through action. Plants respond in a fast, and yet coordinated manner, to environmental contingencies. They pro-actively sample their local environment to elicit information with an adaptive value. Our main thesis is that plant behaviour takes place by way of a process (active inference) that predicts the environmental sources of sensory stimulation. This principle, we argue, endows plants with a form of perception that underwrites purposeful, anticipatory behaviour. The aim of the article is to assess the prospects of a radical predictive processing story that would follow naturally from the free-energy principle for biological systems; an approach that may ultimately bear upon our understanding of life and cognition more broadly
Fluctuations of the Condensate in Ideal and Interacting Bose Gases
We investigate the fluctuations of the condensate in the ideal and weakly
interacting Bose gases confined in a box of volume V within canonical ensemble.
Canonical ensemble is developed to describe the behavior of the fluctuations
when different methods of approximation to the weakly interacting Bose gases
are used. Research shows that the fluctuations of the condensate exhibit
anomalous behavior for the interacting Bose gas confined in a box.Comment: RevTex, 4 Figs,E-mail:[email protected], corrected typo
Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa
The carnivorous aquatic Waterwheel Plant (Aldrovanda vesiculosa L.) and the
closely related terrestrial Venus Flytrap (Dionaea muscipula SOL. EX J. ELLIS)
both feature elaborate snap-traps, which shut after reception of an external
mechanical stimulus by prey animals. Traditionally, Aldrovanda is considered as
a miniature, aquatic Dionaea, an assumption which was already established by
Charles Darwin. However, videos of snapping traps from both species suggest
completely different closure mechanisms. Indeed, the well-described snapping
mechanism in Dionaea comprises abrupt curvature inversion of the two trap
lobes, while the closing movement in Aldrovanda involves deformation of the
trap midrib but not of the lobes, which do not change curvature. In this paper,
we present the first detailed mechanical models for these plants, which are
based on the theory of thin solid membranes and explain this difference by
showing that the fast snapping of Aldrovanda is due to kinematic amplification
of the bending deformation of the midrib, while that of Dionaea unambiguously
relies on the buckling instability that affects the two lobes.Comment: accepted in Physical Review
- …
