1,917 research outputs found
SLOCC invariant and semi-invariants for SLOCC classification of four-qubits
We show there are at least 28 distinct true SLOCC entanglement classes for
four-qubits by means of SLOCC invariant and semi-invariants and derive the
number of the degenerated SLOCC classes for n-qubits.Comment: 22 pages, no figures, 9 tables, submit the paper to a journa
Phase space spinor amplitudes for spin 1/2 systems
The concept of phase space amplitudes for systems with continuous degrees of
freedom is generalized to finite-dimensional spin systems. Complex amplitudes
are obtained on both a sphere and a finite lattice, in each case enabling a
more fundamental description of pure spin states than that previously given by
Wigner functions. In each case the Wigner function can be expressed as the star
product of the amplitude and its conjugate, so providing a generalized Born
interpretation of amplitudes that emphasizes their more fundamental status. The
ordinary product of the amplitude and its conjugate produces a (generalized)
spin Husimi function. The case of spin-\half is treated in detail, and it is
shown that phase space amplitudes on the sphere transform correctly as spinors
under under rotations, despite their expression in terms of spherical
harmonics. Spin amplitudes on a lattice are also found to transform as spinors.
Applications are given to the phase space description of state superposition,
and to the evolution in phase space of the state of a spin-\half magnetic
dipole in a time-dependent magnetic field.Comment: 19 pages, added new results, fixed typo
Minimum Decision Cost for Quantum Ensembles
For a given ensemble of independent and identically prepared particles,
we calculate the binary decision costs of different strategies for measurement
of polarised spin 1/2 particles. The result proves that, for any given values
of the prior probabilities and any number of constituent particles, the cost
for a combined measurement is always less than or equal to that for any
combination of separate measurements upon sub-ensembles. The Bayes cost, which
is that associated with the optimal strategy (i.e., a combined measurement) is
obtained in a simple closed form.Comment: 11 pages, uses RevTe
Planar microwave devices fabricated by ion-implantation patterning of high-temperature superconductors
We have applied ion-implantation inhibit patterning as a new method of fabricating low-loss microwave transmission lines in high-temperature superconductor thin films. To determine the effectiveness of this technique, we fabricated coplanar waveguide transmission lines in YBa2Cu3O7 – thin films that had been deposited on LaAlO3 substrates using pulsed laser deposition. Microwave characterizations of these lines are compared to a reference line fabricated with conventional ion milling. At 76 K and 12 GHz, the attenuation constants of the ion-implanted transmission lines are approximated 0.02 dB/mm, and the overall loss response is indistinguishable from that of the ion-milled device.published_or_final_versio
A non-autonomous stochastic discrete time system with uniform disturbances
The main objective of this article is to present Bayesian optimal control
over a class of non-autonomous linear stochastic discrete time systems with
disturbances belonging to a family of the one parameter uniform distributions.
It is proved that the Bayes control for the Pareto priors is the solution of a
linear system of algebraic equations. For the case that this linear system is
singular, we apply optimization techniques to gain the Bayesian optimal
control. These results are extended to generalized linear stochastic systems of
difference equations and provide the Bayesian optimal control for the case
where the coefficients of these type of systems are non-square matrices. The
paper extends the results of the authors developed for system with disturbances
belonging to the exponential family
Phenomenological approach to the critical dynamics of the QCD phase transition revisited
The phenomenological dynamics of the QCD critical phenomena is revisited.
Recently, Son and Stephanov claimed that the dynamical universality class of
the QCD phase transition belongs to model H. In their discussion, they employed
a time-dependent Ginzburg-Landau equation for the net baryon number density,
which is a conserved quantity. We derive the Langevin equation for the net
baryon number density, i.e., the Cahn-Hilliard equation. Furthermore, they
discussed the mode coupling induced through the {\it irreversible} current.
Here, we show the {\it reversible} coupling can play a dominant role for
describing the QCD critical dynamics and that the dynamical universality class
does not necessarily belong to model H.Comment: 13 pages, the Curie principle is discussed in S.2, to appear in
J.Phys.
ALMA Observations of Gas-Rich Galaxies in z~1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-Density Environments
We present ALMA CO (2-1) detections in 11 gas-rich cluster galaxies at z~1.6,
constituting the largest sample of molecular gas measurements in z>1.5 clusters
to date. The observations span three galaxy clusters, derived from the Spitzer
Adaptation of the Red-sequence Cluster Survey. We augment the >5sigma
detections of the CO (2-1) fluxes with multi-band photometry, yielding stellar
masses and infrared-derived star formation rates, to place some of the first
constraints on molecular gas properties in z~1.6 cluster environments. We
measure sizable gas reservoirs of 0.5-2x10^11 solar masses in these objects,
with high gas fractions and long depletion timescales, averaging 62% and 1.4
Gyr, respectively. We compare our cluster galaxies to the scaling relations of
the coeval field, in the context of how gas fractions and depletion timescales
vary with respect to the star-forming main sequence. We find that our cluster
galaxies lie systematically off the field scaling relations at z=1.6 toward
enhanced gas fractions, at a level of ~4sigma, but have consistent depletion
timescales. Exploiting CO detections in lower-redshift clusters from the
literature, we investigate the evolution of the gas fraction in cluster
galaxies, finding it to mimic the strong rise with redshift in the field. We
emphasize the utility of detecting abundant gas-rich galaxies in high-redshift
clusters, deeming them as crucial laboratories for future statistical studies.Comment: 8 pages, 3 figures, published in ApJ Letters; updated to match
published versio
Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals
Predictions of observable properties by density-functional theory
calculations (DFT) are used increasingly often in experimental condensed-matter
physics and materials engineering as data. These predictions are used to
analyze recent measurements, or to plan future experiments. Increasingly more
experimental scientists in these fields therefore face the natural question:
what is the expected error for such an ab initio prediction? Information and
experience about this question is scattered over two decades of literature. The
present review aims to summarize and quantify this implicit knowledge. This
leads to a practical protocol that allows any scientist - experimental or
theoretical - to determine justifiable error estimates for many basic property
predictions, without having to perform additional DFT calculations. A central
role is played by a large and diverse test set of crystalline solids,
containing all ground-state elemental crystals (except most lanthanides). For
several properties of each crystal, the difference between DFT results and
experimental values is assessed. We discuss trends in these deviations and
review explanations suggested in the literature. A prerequisite for such an
error analysis is that different implementations of the same first-principles
formalism provide the same predictions. Therefore, the reproducibility of
predictions across several mainstream methods and codes is discussed too. A
quality factor Delta expresses the spread in predictions from two distinct DFT
implementations by a single number. To compare the PAW method to the highly
accurate APW+lo approach, a code assessment of VASP and GPAW with respect to
WIEN2k yields Delta values of 1.9 and 3.3 meV/atom, respectively. These
differences are an order of magnitude smaller than the typical difference with
experiment, and therefore predictions by APW+lo and PAW are for practical
purposes identical.Comment: 27 pages, 20 figures, supplementary material available (v5 contains
updated supplementary material
Channel kets, entangled states, and the location of quantum information
The well-known duality relating entangled states and noisy quantum channels
is expressed in terms of a channel ket, a pure state on a suitable tripartite
system, which functions as a pre-probability allowing the calculation of
statistical correlations between, for example, the entrance and exit of a
channel, once a framework has been chosen so as to allow a consistent set of
probabilities. In each framework the standard notions of ordinary (classical)
information theory apply, and it makes sense to ask whether information of a
particular sort about one system is or is not present in another system.
Quantum effects arise when a single pre-probability is used to compute
statistical correlations in different incompatible frameworks, and various
constraints on the presence and absence of different kinds of information are
expressed in a set of all-or-nothing theorems which generalize or give a
precise meaning to the concept of ``no-cloning.'' These theorems are used to
discuss: the location of information in quantum channels modeled using a
mixed-state environment; the (classical-quantum) channels introduced by
Holevo; and the location of information in the physical carriers of a quantum
code. It is proposed that both channel and entanglement problems be classified
in terms of pure states (functioning as pre-probabilities) on systems of parts, with mixed bipartite entanglement and simple noisy channels belonging
to the category , a five-qubit code to the category , etc.; then by
the dimensions of the Hilbert spaces of the component parts, along with other
criteria yet to be determined.Comment: Latex 32 pages, 4 figures in text using PSTricks. Version 3: Minor
typographical errors correcte
- …
