336 research outputs found
Trains, Games, and Complexity: 0/1/2-Player Motion Planning through Input/Output Gadgets
We analyze the computational complexity of motion planning through local
"input/output" gadgets with separate entrances and exits, and a subset of
allowed traversals from entrances to exits, each of which changes the state of
the gadget and thereby the allowed traversals. We study such gadgets in the 0-,
1-, and 2-player settings, in particular extending past
motion-planning-through-gadgets work to 0-player games for the first time, by
considering "branchless" connections between gadgets that route every gadget's
exit to a unique gadget's entrance. Our complexity results include containment
in L, NL, P, NP, and PSPACE; as well as hardness for NL, P, NP, and PSPACE. We
apply these results to show PSPACE-completeness for certain mechanics in
Factorio, [the Sequence], and a restricted version of Trainyard, improving
prior results. This work strengthens prior results on switching graphs and
reachability switching games.Comment: 37 pages, 36 figure
Signal Transmission Across Tile Assemblies: 3D Static Tiles Simulate Active Self-Assembly by 2D Signal-Passing Tiles
The 2-Handed Assembly Model (2HAM) is a tile-based self-assembly model in
which, typically beginning from single tiles, arbitrarily large aggregations of
static tiles combine in pairs to form structures. The Signal-passing Tile
Assembly Model (STAM) is an extension of the 2HAM in which the tiles are
dynamically changing components which are able to alter their binding domains
as they bind together. For our first result, we demonstrate useful techniques
and transformations for converting an arbitrarily complex STAM tile set
into an STAM tile set where every tile has a constant, low amount of
complexity, in terms of the number and types of ``signals'' they can send, with
a trade off in scale factor.
Using these simplifications, we prove that for each temperature
there exists a 3D tile set in the 2HAM which is intrinsically universal for the
class of all 2D STAM systems at temperature (where the STAM does
not make use of the STAM's power of glue deactivation and assembly breaking, as
the tile components of the 2HAM are static and unable to change or break
bonds). This means that there is a single tile set in the 3D 2HAM which
can, for an arbitrarily complex STAM system , be configured with a
single input configuration which causes to exactly simulate at a scale
factor dependent upon . Furthermore, this simulation uses only two planes of
the third dimension. This implies that there exists a 3D tile set at
temperature in the 2HAM which is intrinsically universal for the class of
all 2D STAM systems at temperature . Moreover, we show that for each
temperature there exists an STAM tile set which is intrinsically
universal for the class of all 2D STAM systems at temperature ,
including the case where .Comment: A condensed version of this paper will appear in a special issue of
Natural Computing for papers from DNA 19. This full version contains proofs
not seen in the published versio
Picture-Hanging Puzzles
We show how to hang a picture by wrapping rope around n nails, making a
polynomial number of twists, such that the picture falls whenever any k out of
the n nails get removed, and the picture remains hanging when fewer than k
nails get removed. This construction makes for some fun mathematical magic
performances. More generally, we characterize the possible Boolean functions
characterizing when the picture falls in terms of which nails get removed as
all monotone Boolean functions. This construction requires an exponential
number of twists in the worst case, but exponential complexity is almost always
necessary for general functions.Comment: 18 pages, 8 figures, 11 puzzles. Journal version of FUN 2012 pape
Locked and Unlocked Chains of Planar Shapes
We extend linkage unfolding results from the well-studied case of polygonal
linkages to the more general case of linkages of polygons. More precisely, we
consider chains of nonoverlapping rigid planar shapes (Jordan regions) that are
hinged together sequentially at rotatable joints. Our goal is to characterize
the families of planar shapes that admit locked chains, where some
configurations cannot be reached by continuous reconfiguration without
self-intersection, and which families of planar shapes guarantee universal
foldability, where every chain is guaranteed to have a connected configuration
space. Previously, only obtuse triangles were known to admit locked shapes, and
only line segments were known to guarantee universal foldability. We show that
a surprisingly general family of planar shapes, called slender adornments,
guarantees universal foldability: roughly, the distance from each edge along
the path along the boundary of the slender adornment to each hinge should be
monotone. In contrast, we show that isosceles triangles with any desired apex
angle less than 90 degrees admit locked chains, which is precisely the
threshold beyond which the inward-normal property no longer holds.Comment: 23 pages, 25 figures, Latex; full journal version with all proof
details. (Fixed crash-induced bugs in the abstract.
One-dimensional staged self-assembly
17th International Conference, DNA 17, Pasadena, CA, USA, September 19-23, 2011. ProceedingsWe introduce the problem of staged self-assembly of one-dimensional nanostructures, which becomes interesting when the elements are labeled (e.g., representing functional units that must be placed at specific locations). In a restricted model in which each operation has a single terminal assembly, we prove that assembling a given string of labels with the fewest stages is equivalent, up to constant factors, to compressing the string to be uniquely derived from the smallest possible context-free grammar (a well-studied O(logn)-approximable problem). Without this restriction, we show that the optimal assembly can be substantially smaller than the optimal context-free grammar, by a factor of Ω √n/log n even for binary strings of length n. Fortunately, we can bound this separation in model power by a quadratic function in the number of distinct glues or tiles allowed in the assembly, which is typically small in practice
Geometric Mechanics of Curved Crease Origami
Folding a sheet of paper along a curve can lead to structures seen in
decorative art and utilitarian packing boxes. Here we present a theory for the
simplest such structure: an annular circular strip that is folded along a
central circular curve to form a three-dimensional buckled structure driven by
geometrical frustration. We quantify this shape in terms of the radius of the
circle, the dihedral angle of the fold and the mechanical properties of the
sheet of paper and the fold itself. When the sheet is isometrically deformed
everywhere except along the fold itself, stiff folds result in creases with
constant curvature and oscillatory torsion. However, relatively softer folds
inherit the broken symmetry of the buckled shape with oscillatory curvature and
torsion. Our asymptotic analysis of the isometrically deformed state is
corroborated by numerical simulations which allow us to generalize our analysis
to study multiply folded structures
Time-Energy Tradeoffs for Evacuation by Two Robots in the Wireless Model
Two robots stand at the origin of the infinite line and are tasked with
searching collaboratively for an exit at an unknown location on the line. They
can travel at maximum speed and can change speed or direction at any time.
The two robots can communicate with each other at any distance and at any time.
The task is completed when the last robot arrives at the exit and evacuates. We
study time-energy tradeoffs for the above evacuation problem. The evacuation
time is the time it takes the last robot to reach the exit. The energy it takes
for a robot to travel a distance at speed is measured as . The
total and makespan evacuation energies are respectively the sum and maximum of
the energy consumption of the two robots while executing the evacuation
algorithm.
Assuming that the maximum speed is , and the evacuation time is at most
, where is the distance of the exit from the origin, we study the
problem of minimizing the total energy consumption of the robots. We prove that
the problem is solvable only for . For the case , we give an
optimal algorithm, and give upper bounds on the energy for the case .
We also consider the problem of minimizing the evacuation time when the
available energy is bounded by . Surprisingly, when is a
constant, independent of the distance of the exit from the origin, we prove
that evacuation is possible in time , and this is optimal up
to a logarithmic factor. When is linear in , we give upper bounds
on the evacuation time.Comment: This is the full version of the paper with the same title which will
appear in the proceedings of the 26th International Colloquium on Structural
Information and Communication Complexity (SIROCCO'19) L'Aquila, Italy during
July 1-4, 201
Parameterized Edge Hamiltonicity
We study the parameterized complexity of the classical Edge Hamiltonian Path
problem and give several fixed-parameter tractability results. First, we settle
an open question of Demaine et al. by showing that Edge Hamiltonian Path is FPT
parameterized by vertex cover, and that it also admits a cubic kernel. We then
show fixed-parameter tractability even for a generalization of the problem to
arbitrary hypergraphs, parameterized by the size of a (supplied) hitting set.
We also consider the problem parameterized by treewidth or clique-width.
Surprisingly, we show that the problem is FPT for both of these standard
parameters, in contrast to its vertex version, which is W-hard for
clique-width. Our technique, which may be of independent interest, relies on a
structural characterization of clique-width in terms of treewidth and complete
bipartite subgraphs due to Gurski and Wanke
The Tree Inclusion Problem: In Linear Space and Faster
Given two rooted, ordered, and labeled trees and the tree inclusion
problem is to determine if can be obtained from by deleting nodes in
. This problem has recently been recognized as an important query primitive
in XML databases. Kilpel\"ainen and Mannila [\emph{SIAM J. Comput. 1995}]
presented the first polynomial time algorithm using quadratic time and space.
Since then several improved results have been obtained for special cases when
and have a small number of leaves or small depth. However, in the worst
case these algorithms still use quadratic time and space. Let , , and
denote the number of nodes, the number of leaves, and the %maximum depth
of a tree . In this paper we show that the tree inclusion
problem can be solved in space and time: O(\min(l_Pn_T, l_Pl_T\log
\log n_T + n_T, \frac{n_Pn_T}{\log n_T} + n_{T}\log n_{T})). This improves or
matches the best known time complexities while using only linear space instead
of quadratic. This is particularly important in practical applications, such as
XML databases, where the space is likely to be a bottleneck.Comment: Minor updates from last tim
The Power of Duples (in Self-Assembly): It's Not So Hip To Be Square
In this paper we define the Dupled abstract Tile Assembly Model (DaTAM),
which is a slight extension to the abstract Tile Assembly Model (aTAM) that
allows for not only the standard square tiles, but also "duple" tiles which are
rectangles pre-formed by the joining of two square tiles. We show that the
addition of duples allows for powerful behaviors of self-assembling systems at
temperature 1, meaning systems which exclude the requirement of cooperative
binding by tiles (i.e., the requirement that a tile must be able to bind to at
least 2 tiles in an existing assembly if it is to attach). Cooperative binding
is conjectured to be required in the standard aTAM for Turing universal
computation and the efficient self-assembly of shapes, but we show that in the
DaTAM these behaviors can in fact be exhibited at temperature 1. We then show
that the DaTAM doesn't provide asymptotic improvements over the aTAM in its
ability to efficiently build thin rectangles. Finally, we present a series of
results which prove that the temperature-2 aTAM and temperature-1 DaTAM have
mutually exclusive powers. That is, each is able to self-assemble shapes that
the other can't, and each has systems which cannot be simulated by the other.
Beyond being of purely theoretical interest, these results have practical
motivation as duples have already proven to be useful in laboratory
implementations of DNA-based tiles
- …
