2,233 research outputs found
Electric-Field-Induced Mott Insulating States in Organic Field-Effect Transistors
We consider the possibility that the electrons injected into organic
field-effect transistors are strongly correlated. A single layer of acenes can
be modelled by a Hubbard Hamiltonian similar to that used for the
kappa-(BEDT-TTF)(2)X family of organic superconductors. The injected electrons
do not necessarily undergo a transition to a Mott insulator state as they would
in bulk crystals when the system is half-filled. We calculate the fillings
needed for obtaining insulating states in the framework of the slave-boson
theory and in the limit of large Hubbard repulsion, U. We also suggest that
these Mott states are unstable above some critical interlayer coupling or
long-range Coulomb interaction.Comment: 9 pages, 7 figure
Bacillus anthracis diversity in Kruger National Park [South Africa]
The Kruger National Park (KNP), South Africa, has a recorded history of periodic anthrax epidemics causing widespread disease among wild animals. Bacillus anthracis is the causative agent of anthrax, a disease primarily affecting ungulate herbivores. Worldwide there is little diversity among B. anthracis isolates, but examination of variable-number tandem repeat (VNTR) loci has identified six major clones, with the most dissimilar types split into the A and B branches. Both the A and B types are found in southern Africa, giving this region the greatest genetic diversity of B. anthracis worldwide. Consequently, southern Africa has been hypothesized to be the geographic origin of B. anthracis. In this study, the genotypic types of 98 KNP B. anthracis isolates were identified using multiple-locus VNTR analysis. Two major types are evident, the A branch and the B branch. The spatial and temporal distribution of the different genotypes indicates that anthrax epidemic foci are independent, though correlated through environmental cues. Kruger B isolates were found on significantly higher-calcium and higher-pH soils than were Kruger type A. This relationship between genotype and soil chemistry may be due to adaptive differences among divergent anthrax strains. While this association may be simply fortuitous, adaptation of A types to diverse environmental conditions is consistent with their greater geographic dispersal and genetic dissimilarity
Improper colourings inspired by Hadwiger’s conjecture
Hadwiger’s Conjecture asserts that every Kt-minor-free graph has a proper (t − 1)-colouring. We relax the conclusion in Hadwiger’s Conjecture via improper colourings. We prove that every Kt-minor-free graph is (2t − 2)-colourable with monochromatic components of order at most 1/2 (t − 2). This result has no more colours and much smaller monochromatic components than all previous results in this direction. We then prove that every Kt-minor-free graph is (t − 1)-colourable with monochromatic degree at most t − 2. This is the best known degree bound for such a result. Both these theorems are based on a decomposition method of independent interest. We give analogous results for Ks,t-minorfree graphs, which lead to improved bounds on generalised colouring numbers for these classes. Finally, we prove that graphs containing no Kt-immersion are 2-colourable with bounded monochromatic degree
The influence of distributed leadership on teachers' organizational commitment: a multilevel approach
In the present study the effects of a cooperative leadership team, distributed leadership, participative decision-making, and context variables on teachers' organizational commitment are investigated. Multilevel analyses on data from 1522 teachers indicated that 9% of the variance in teachers' organizational commitment is attributable to differences between schools. The analyses revealed that especially the presence of a cooperative leadership team and the amount of leadership support played a significantly positive key role in predicting teachers' organizational commitment. Also, participative decision-making and distribution of the supportive leadership function had a significant positive impact on teachers' organizational commitment. In contrast, distribution of the supervisory leadership function and teachers' job experience had a significant negative impact
The relation between school leadership from a distributed perspective and teachers' organizational commitment: examining the source of the leadership function
Purpose: In this study the relationship between school leadership and teachers’ organizational commitment is examined by taking into account a distributed leadership perspective. The relation between teachers’ organizational commitment and contextual variables of teachers’ perceptions of the quality and the source of the supportive and supervisory leadership function, participative decision making, and cooperation within the leadership team are examined. Research Design: A survey was set up involving 1,522 teachers from 46 large secondary schools in Flanders (Belgium). Because the data in the present study have an inherent hierarchical structure, that is, teachers are nested into schools, hierarchical linear modeling techniques are applied. Findings: The analyses reveal that 9% of the variance in teachers’ organizational commitment is attributable to differences between schools. Teachers’ organizational commitment is mainly related to quality of the supportive leadership, cooperation within the leadership team, and participative decision making. Who performed the supportive leadership function plays only a marginally significant positive role. The quality of the supervisory leadership function and the role of the leadership team members in this function were not significantly related to teachers’ organizational commitment. Conclusions: The implications of the findings are that to promote teachers’ organizational commitment teachers should feel supported by their leadership team and that this leadership team should be characterized by group cohesion, role clarity, and goal orientedness. Recommendations for further research are provided
Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons
Fundamental interactions induced by lattice vibrations on ultrafast time
scales become increasingly important for modern nanoscience and technology.
Experimental access to the physical properties of acoustic phonons in the THz
frequency range and over the entire Brillouin zone is crucial for understanding
electric and thermal transport in solids and their compounds. Here, we report
on the generation and nonlinear propagation of giant (1 percent) acoustic
strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast
surface plasmon interferometry. This new technique allows for unambiguous
characterization of arbitrary ultrafast acoustic transients. The giant acoustic
pulses experience substantial nonlinear reshaping already after a propagation
distance of 100 nm in a crystalline gold layer. Excellent agreement with the
Korteveg-de Vries model points to future quantitative nonlinear femtosecond
THz-ultrasonics at the nano-scale in metals at room temperature
- …
