638 research outputs found

    EGRET Observations of the Diffuse Gamma-Ray Emission in Orion: Analysis Through Cycle 6

    Get PDF
    We present a study of the high-energy diffuse emission observed toward Orion by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The total exposure by EGRET in this region has increased by more than a factor of two since a previous study. A simple model for the diffuse emission adequately fits the data; no significant point sources are detected in the region studied (l=195l = 195^\circ to 220220^\circ and b=25to10b = -25^\circ to -10^\circ) in either the composite dataset or in two separate groups of EGRET viewing periods considered. The gamma-ray emissivity in Orion is found to be (1.65±0.11)×1026ssr1(1.65 \pm 0.11) \times 10^{-26} {s sr}^{-1} for E > 100 MeV, and the differential emissivity is well-described as a combination of contributions from cosmic-ray electrons and protons with approximately the local density. The molecular mass calibrating ratio is N(H2)/WCO=(1.35±0.15)×1020cm2(Kkm/s)1N(H_2)/W_{CO} = (1.35 \pm 0.15) \times 10^{20} cm^{-2} (K km/s)^{-1}.Comment: 16 pages, including 5 figures. 3 Tables as three separate files. Latex document, needs AASTEX style files. Accepted for publication in Ap

    Diffuse Gamma Rays: Galactic and Extragalactic Diffuse Emission

    Full text link
    "Diffuse" gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived "average" spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.Comment: 32 pages, 28 figures, kapproc.cls. Chapter to the book "Cosmic Gamma-Ray Sources," to be published by Kluwer ASSL Series, Edited by K. S. Cheng and G. E. Romero. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    Refining the associations of the Fermi Large Area Telescope Source Catalogs

    Get PDF
    The Fermi-Large Area Telescope (LAT) First Source Catalog (1FGL) was released in February 2010 and the Fermi-LAT 2-Year Source Catalog (2FGL) appeared in April 2012, based on data from 24 months of operation. Since their releases, many follow up observations of unidentified gamma-ray sources (UGSs) were performed and new procedures to associate gamma-ray sources with potential counterparts at other wavelengths were developed. Here we review and characterize all the associations as published in the 1FGL and 2FGL catalog on the basis of multifrequency archival observations. In particular we located 177 spectra for the low-energy counterparts that were not listed in the previous Fermi catalogs, and in addition we present new spectroscopic observations of 8 gamma-ray blazar candidates. Based on our investigations, we introduce a new counterpart category of "candidate associations" and propose a refined classification for the candidate low-energy counterparts of the Fermi sources. We compare the 1FGL-assigned counterparts with those listed in the 2FGL to determine which unassociated sources became associated in later releases of the Fermi catalogs. We also search for potential counterparts to all the remaining unassociated Fermi sources. Finally, we prepare a refined and merged list of all the associations of the 1FGL plus 2FGL catalogs that includes 2219 unique Fermi objects. This is the most comprehensive and systematic study of all the associations collected for the gamma-ray sources available to date. We conclude that 80% of the Fermi sources have at least one known plausible gamma-ray emitter within their positional uncertainty regions.Comment: 26 pages, 24 figures, 7 tables, ApJS accepted for publication (pre-proof version uploaded

    GLAST: Understanding the High Energy Gamma-Ray Sky

    Full text link
    We discuss the ability of the GLAST Large Area Telescope (LAT) to identify, resolve, and study the high energy gamma-ray sky. Compared to previous instruments the telescope will have greatly improved sensitivity and ability to localize gamma-ray point sources. The ability to resolve the location and identity of EGRET unidentified sources is described. We summarize the current knowledge of the high energy gamma-ray sky and discuss the astrophysics of known and some prospective classes of gamma-ray emitters. In addition, we also describe the potential of GLAST to resolve old puzzles and to discover new classes of sources.Comment: To appear in Cosmic Gamma Ray Sources, Kluwer ASSL Series, Edited by K.S. Cheng and G.E. Romer

    A luminosity constraint on the origin of unidentified high energy sources

    Full text link
    The identification of point sources poses a great challenge for the high energy community. We present a new approach to evaluate the likelihood of a set of sources being a Galactic population based on the simple assumption that galaxies similar to the Milky Way host comparable populations of gamma-ray emitters. We propose a luminosity constraint on Galactic source populations which complements existing approaches by constraining the abundance and spatial distribution of any objects of Galactic origin, rather than focusing on the properties of a specific candidate emitter. We use M31 as a proxy for the Milky Way, and demonstrate this technique by applying it to the unidentified EGRET sources. We find that it is highly improbable that the majority of the unidentified EGRET sources are members of a Galactic halo population (e.g., dark matter subhalos), but that current observations do not provide any constraints on all of these sources being Galactic objects if they reside entirely in the disk and bulge. Applying this method to upcoming observations by the Fermi Gamma-ray Space Telescope has the potential to exclude association of an even larger number of unidentified sources with any Galactic source class.Comment: 18 pages, 4 figures, to appear in JPhys

    HELIUM PHOTODISINTEGRATION AND NUCLEOSYNTHESIS: IMPLICATIONS FOR TOPOLOGICAL DEFECTS, HIGH ENERGY COSMIC RAYS, AND MASSIVE BLACK HOLES

    Get PDF
    We consider the production of 3^3He and 2^2H by 4^4He photodisintegration initiated by non-thermal energy releases during early cosmic epochs. We find that this process cannot be the predominant source of primordial 2^2H since it would result in anomalously high 3^3He/D ratios in conflict with standard chemical evolution assumptions. We apply this fact to constrain topological defect models of highest energy cosmic ray (HECR) production. Such models have been proposed as possible sources of ultrahigh energy particles and gamma-rays with energies above 102010^{20}eV. The constraints on these models derived from 4^4He-photodisintegration are compared to corresponding limits from spectral distortions of the cosmic microwave background radiation (CMBR) and from the observed diffuse gamma-ray background. It is shown that for reasonable primary particle injection spectra superconducting cosmic strings, unlike ordinary strings or annihilating monopoles, cannot produce the HECR flux at the present epoch without violating at least the 4^4He-photodisintegration bound. The constraint from the diffuse gamma-ray background rules out the dominant production of HECR by the decay of Grand Unification particles in models with cosmological evolution assuming standard fragmentation functions. Constraints on massive black hole induced photodisintegration are also discussed.Comment: 20 latex pages, 1 figure added via figures comman

    Fermi-LAT Study of Gamma-ray Emission in the Direction of Supernova Remnant W49B

    Get PDF
    We present an analysis of the gamma-ray data obtained with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the direction of SNR W49B (G43.3-0.2). A bright unresolved gamma-ray source detected at a significance of 38 sigma is found to coincide with SNR W49B. The energy spectrum in the 0.2-200 GeV range gradually steepens toward high energies. The luminosity is estimated to be 1.5x10^{36} (D/8 kpc)^2 erg s^-1 in this energy range. There is no indication that the gamma-ray emission comes from a pulsar. Assuming that the SNR shell is the site of gamma-ray production, the observed spectrum can be explained either by the decay of neutral pi mesons produced through the proton-proton collisions or by electron bremsstrahlung. The calculated energy density of relativistic particles responsible for the LAT flux is estimated to be remarkably large, U_{e,p}>10^4 eV cm^-3, for either gamma-ray production mechanism.Comment: 9 pages, 10 figure

    Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    Full text link
    Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently, only seven were observed to pulse in gamma rays and these were all discovered at other wavelengths. The Fermi Large Area Telescope makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics and the energetics of pulsar wind nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz Parkinson, Marcus Ziegle
    corecore