387 research outputs found
Prehension and perception of size in left visual neglect
Right hemisphere damaged patients with and without left visual neglect, and age-matched controls had objects of various sizes presented within left or right body hemispace. Subjects were asked to estimate the objects’ sizes or to reach out and grasp them, in order to assess visual size processing in perceptual-experiential and action-based contexts respectively. No impairments of size processing were detected in the prehension performance of the neglect patients but a generalised slowing of movement was observed, associated with an extended deceleration phase. Additionally both patient groups reached maximum grip aperture relatively later in the movement than did controls. For the estimation task it was predicted that the left visual neglect group would systematically underestimate the sizes of objects presented within left hemispace but no such abnormalities were observed. Possible reasons for this unexpected null finding are discussed
Организационная модель аудита доходов санаторно-курортных предприятий
Целью статьи является определение сущности с учетом взглядов ученых и обоснование особенностей организационной модели аудита доходов санаторно-курортных организаций.Метою статті є визначення суті з урахуванням поглядів учених і обґрунтування особливостей організаційної моделі аудиту доходів санаторно-курортних організацій
Independent causal contributions of alpha- and beta-band oscillations during movement selection
To select a movement, specific neuronal populations controlling particular features of that movement need to be activated, whereas other populations are downregulated. The selective (dis)inhibition of cortical sensorimotor populations is governed by rhythmic neural activity in the alpha (8–12 Hz) and beta (15–25 Hz) frequency range. However, it is unclear whether and how these rhythms contribute independently to motor behavior. Building on a recent dissociation of the sensorimotor alpha- and beta-band rhythms, we test the hypothesis that the beta-band rhythm governs the disinhibition of task-relevant neuronal populations, whereas the alpha-band rhythm suppresses neurons that may interfere with task performance. Cortical alpha- and beta-band rhythms were manipulated with transcranial alternating current stimulation (tACS) while human participants selected how to grasp an object. Stimulation was applied at either 10 or 20 Hz and was imposed on the sensorimotor cortex contralaterally or ipsilaterally to the grasping hand. In line with task-induced changes in endogenous spectral power, the effect of the tACS intervention depended on the frequency and site of stimulation. Whereas tACS stimulation generally increased movement selection times, 10 Hz stimulation led to relatively faster selection times when applied to the hemisphere ipsilateral to the grasping hand, compared with other stimulation conditions. These effects occurred selectively when multiple movements were considered. These observations functionally differentiate the causal contribution of alpha- and beta-band oscillations to movement selection. The findings suggest that sensorimotor beta-band rhythms disinhibit task-relevant populations, whereas alpha-band rhythms inhibit neuronal populations that could interfere with movement selection
Are there right hemisphere contributions to visually-guided movement? Manipulating left hand reaction time advantages in dextrals
This is the final version of the article. It first appeared from Frontiers Media via http://dx.doi.org/10.3389/fpsyg.2015.01203Many studies have argued for distinct but complementary contributions from each hemisphere in the control of movements to visual targets. Investigators have attempted to extend observations from patients with unilateral left- and right-hemisphere damage, to those using neurologically-intact participants, by assuming that each hand has privileged access to the contralateral hemisphere. Previous attempts to illustrate right hemispheric contributions to the control of aiming have focussed on increasing the spatial demands of an aiming task, to attenuate the typical right hand advantages, to try to enhance a left hand reaction time advantage in right-handed participants. These early attempts have not been successful. The present study circumnavigates some of the theoretical and methodological difficulties of some of the earlier experiments, by using three different tasks linked directly to specialized functions of the right hemisphere: bisecting, the gap effect, and visuospatial localization. None of these tasks were effective in reducing the magnitude of left hand reaction time advantages in right handers. Results are discussed in terms of alternatives to right hemispheric functional explanations of the effect, the one-dimensional nature of our target arrays, power and precision given the size of the left hand RT effect, and the utility of examining the proportions of participants who show these effects, rather than exclusive reliance on measures of central tendency and their associated null hypothesis significance tests.We are grateful to Lorna Jakobson, A. David Milner, Irene Logan, John Orphan, Phil Surette, and Jim Urqhuart for expert technical assistance. Leah T. Johnstone and two anonymous referees provided detailed comments on this manuscript. This research was supported by Medical Research Council of Canada Grant MA-7269 to MG and a Wellcome Trust Travel Grant to DC
An attentional approach to study mental representations of different parts of the hand
[EN]The aim of this study is to investigate whether
the fingers are represented separately from the palm. An
exogenous spatial orientation paradigm was used where
participants had to detect a tactile stimulus that could
appear on the palm, the middle finger or the ring finger of
the left hand. The tactile target was preceded by a non predictive cue using different stimulus-onset asynchronies
(SOA). We observed a Facilitation Effect in the palm and
Inhibition of Return (IOR) for fingers using a short cue target SOA, whereas the IOR was found in fingers and
palm in long cue-target SOA. Also we observed a ‘Cue
above Target’ effect (facilitation effect when the Cue had
appeared distal to the target location in a vertical line) at
the long SOA. Together, we suggest that the general pat tern of results supports the proposed hypothesis about the
different mental representation of fingers and palms, but
with a considerable and hierarchical interrelation between
them
Impaired peripheral reaching and on-line corrections in patient DF: optic ataxia with visual form agnosia
An influential model of vision suggests the presence of two visual streams within the brain: a dorsal occipito-parietal stream which mediates action and a ventral occipito-temporal stream which mediates perception. One of the cornerstones of this model is DF, a patient with visual form agnosia following bilateral ventral stream lesions. Despite her inability to identify and distinguish visual stimuli, DF can still use visual information to control her hand actions towards these stimuli. These observations have been widely interpreted as demonstrating a double dissociation from optic ataxia, a condition observed after bilateral dorsal stream damage in which patients are unable to act towards objects that they can recognize. In Experiment 1, we investigated how patient DF performed on the classical diagnostic task for optic ataxia, reaching in central and peripheral vision. We replicated recent findings that DF is remarkably inaccurate when reaching to peripheral targets, but not when reaching in free vision. In addition we present new evidence that her peripheral reaching errors follow the optic ataxia pattern increasing with target eccentricity and being biased towards fixation. In Experiments 2 and 3, for the first time we examined DF’s on-line control of reaching using a double-step paradigm in fixation-controlled and free-vision versions of the task. DF was impaired when performing fast on-line corrections on all conditions tested, similarly to optic ataxia patients. Our findings question the long-standing assumption that DF’s dorsal visual stream is functionally intact and that her on-line visuomotor control is spared. In contrast, in addition to visual form agnosia, DF also has visuomotor symptoms of optic ataxia which are most likely explained by bilateral damage to the superior parietal occipital cortex. We thus conclude that patient DF can no longer be considered as an appropriate single-case model for testing the neural basis of perception and action dissociations
Effects of hand orientation on motor imagery - event related potentials suggest kinesthetic motor imagery to solve the hand laterality judgment task
Motor imagery (MI) refers to the process of imagining the execution of a specific motor action without actually producing an overt movement. Two forms of MI have been distinguished: visual MI and kinesthetic MI. To distinguish between these forms of MI we employed an event related potential (ERP) study to measure interference effects induced by hand orientation manipulations in a hand laterality judgement task. We hypothesized that this manipulation should only affect kinesthetic MI but not visual MI. The ERPs elicited by rotated hand stimuli contained the classic rotation related negativity (RRN) with respect to palm view stimuli. We observed that laterally rotated stimuli led to a more marked RRN than medially rotated stimuli. This RRN effect was observed when participants had
their hands positioned in either a straight (control) or an inward rotated posture, but not when their hands were positioned in an outward rotated posture. Posture effects on the ERP-RRN have not previously been studied. Apparently, a congruent hand posture (hands positioned in an outward rotated fashion) facilitates the judgement of the otherwise more demanding laterally rotated hand stimuli. These ERP findings support a kinesthetic interpretation of MI involved in solving the hand laterality judgement task. The RRN may be used as a non-invasive marker for kinesthetic MI and seems useful in revealing the covert behavior of MI in e.g. rehabilitation programs
Preserving the ability to discriminate between left and right; A case study
Left-right orientation, a function related to the parietal lobe, is important for many daily activities. Here, we describe a left-handed patient with a right parietal brain tumour. During awake surgery, electric stimulation of the right inferior parietal lobe resulted in mistakes in his left-right orientation. Postoperatively our patient had no problems in discriminating left right. This case report shows that monitoring of left-right orientation during awake brain tumour surgery is feasible so that this function can be preserved
Prehension and perception of size in left visual neglect
Right hemisphere damaged patients with and without left visual neglect, and age-matched controls had objects of various sizes presented within left or right body hemispace. Subjects were asked to estimate the objects' sizes or to reach out and grasp them, in order to assess visual size processing in perceptual-experiential and action-based contexts respectively. No impairments of size processing were detected in the prehension performance of the neglect patients but a generalised slowing of movement was observed, associated with an extended deceleration phase. Additionally both patient groups reached maximum grip aperture relatively later in the movement than did controls. For the estimation task it was predicted that the left visual neglect group would systematically underestimate the sizes of objects presented within left hemispace but no such abnormalities were observed. Possible reasons for this unexpected null finding are discussed.</p
- …
