209 research outputs found
Spaces of finite element differential forms
We discuss the construction of finite element spaces of differential forms
which satisfy the crucial assumptions of the finite element exterior calculus,
namely that they can be assembled into subcomplexes of the de Rham complex
which admit commuting projections. We present two families of spaces in the
case of simplicial meshes, and two other families in the case of cubical
meshes. We make use of the exterior calculus and the Koszul complex to define
and understand the spaces. These tools allow us to treat a wide variety of
situations, which are often treated separately, in a unified fashion.Comment: To appear in: Analysis and Numerics of Partial Differential
Equations, U. Gianazza, F. Brezzi, P. Colli Franzone, and G. Gilardi, eds.,
Springer 2013. v2: a few minor typos corrected. v3: a few more typo
correction
Families index theory for Overlap lattice Dirac operator. I
The index bundle of the Overlap lattice Dirac operator over the orbit space
of lattice gauge fields is introduced and studied. Obstructions to the
vanishing of gauge anomalies in the Overlap formulation of lattice chiral gauge
theory have a natural description in this context. Our main result is a formula
for the topological charge (integrated Chern character) of the index bundle
over even-dimensional spheres in the orbit space. It reduces under suitable
conditions to the topological charge of the usual (continuum) index bundle in
the classical continuum limit (this is announced and sketched here; the details
will be given in a forthcoming paper). Thus we see that topology of the index
bundle of the Dirac operator over the gauge field orbit space can be captured
in a finite-dimensional lattice setting.Comment: Latex, 23 pages. v4: minor improvements, results unchanged; to appear
in Nucl.Phys.
Hodge Theory on Metric Spaces
Hodge theory is a beautiful synthesis of geometry, topology, and analysis,
which has been developed in the setting of Riemannian manifolds. On the other
hand, spaces of images, which are important in the mathematical foundations of
vision and pattern recognition, do not fit this framework. This motivates us to
develop a version of Hodge theory on metric spaces with a probability measure.
We believe that this constitutes a step towards understanding the geometry of
vision.
The appendix by Anthony Baker provides a separable, compact metric space with
infinite dimensional \alpha-scale homology.Comment: appendix by Anthony W. Baker, 48 pages, AMS-LaTeX. v2: final version,
to appear in Foundations of Computational Mathematics. Minor changes and
addition
A simplicial gauge theory
We provide an action for gauge theories discretized on simplicial meshes,
inspired by finite element methods. The action is discretely gauge invariant
and we give a proof of consistency. A discrete Noether's theorem that can be
applied to our setting, is also proved.Comment: 24 pages. v2: New version includes a longer introduction and a
discrete Noether's theorem. v3: Section 4 on Noether's theorem has been
expanded with Proposition 8, section 2 has been expanded with a paragraph on
standard LGT. v4: Thorough revision with new introduction and more background
materia
Expansion in SL_d(Z/qZ), q arbitrary
Let S be a fixed finite symmetric subset of SL_d(Z), and assume that it
generates a Zariski-dense subgroup G. We show that the Cayley graphs of pi_q(G)
with respect to the generating set pi_q(S) form a family of expanders, where
pi_q is the projection map Z->Z/qZ
Expansion in perfect groups
Let Ga be a subgroup of GL_d(Q) generated by a finite symmetric set S. For an
integer q, denote by Ga_q the subgroup of Ga consisting of the elements that
project to the unit element mod q. We prove that the Cayley graphs of Ga/Ga_q
with respect to the generating set S form a family of expanders when q ranges
over square-free integers with large prime divisors if and only if the
connected component of the Zariski-closure of Ga is perfect.Comment: 62 pages, no figures, revision based on referee's comments: new ideas
are explained in more details in the introduction, typos corrected, results
and proofs unchange
Isoperimetric Inequalities in Simplicial Complexes
In graph theory there are intimate connections between the expansion
properties of a graph and the spectrum of its Laplacian. In this paper we
define a notion of combinatorial expansion for simplicial complexes of general
dimension, and prove that similar connections exist between the combinatorial
expansion of a complex, and the spectrum of the high dimensional Laplacian
defined by Eckmann. In particular, we present a Cheeger-type inequality, and a
high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach,
we obtain a connection between spectral properties of complexes and Gromov's
notion of geometric overlap. Using the work of Gunder and Wagner, we give an
estimate for the combinatorial expansion and geometric overlap of random
Linial-Meshulam complexes
Self-avoiding walks and connective constants
The connective constant of a quasi-transitive graph is the
asymptotic growth rate of the number of self-avoiding walks (SAWs) on from
a given starting vertex. We survey several aspects of the relationship between
the connective constant and the underlying graph .
We present upper and lower bounds for in terms of the
vertex-degree and girth of a transitive graph.
We discuss the question of whether for transitive
cubic graphs (where denotes the golden mean), and we introduce the
Fisher transformation for SAWs (that is, the replacement of vertices by
triangles).
We present strict inequalities for the connective constants
of transitive graphs , as varies.
As a consequence of the last, the connective constant of a Cayley
graph of a finitely generated group decreases strictly when a new relator is
added, and increases strictly when a non-trivial group element is declared to
be a further generator.
We describe so-called graph height functions within an account of
"bridges" for quasi-transitive graphs, and indicate that the bridge constant
equals the connective constant when the graph has a unimodular graph height
function.
A partial answer is given to the question of the locality of
connective constants, based around the existence of unimodular graph height
functions.
Examples are presented of Cayley graphs of finitely presented
groups that possess graph height functions (that are, in addition, harmonic and
unimodular), and that do not.
The review closes with a brief account of the "speed" of SAW.Comment: Accepted version. arXiv admin note: substantial text overlap with
arXiv:1304.721
Newtonian Cosmology in Lagrangian Formulation: Foundations and Perturbation Theory
The ``Newtonian'' theory of spatially unbounded, self--gravitating,
pressureless continua in Lagrangian form is reconsidered. Following a review of
the pertinent kinematics, we present alternative formulations of the Lagrangian
evolution equations and establish conditions for the equivalence of the
Lagrangian and Eulerian representations. We then distinguish open models based
on Euclidean space from closed models based (without loss of generality)
on a flat torus \T^3. Using a simple averaging method we show that the
spatially averaged variables of an inhomogeneous toroidal model form a
spatially homogeneous ``background'' model and that the averages of open
models, if they exist at all, in general do not obey the dynamical laws of
homogeneous models. We then specialize to those inhomogeneous toroidal models
whose (unique) backgrounds have a Hubble flow, and derive Lagrangian evolution
equations which govern the (conformally rescaled) displacement of the
inhomogeneous flow with respect to its homogeneous background. Finally, we set
up an iteration scheme and prove that the resulting equations have unique
solutions at any order for given initial data, while for open models there
exist infinitely many different solutions for given data.Comment: submitted to G.R.G., TeX 30 pages; AEI preprint 01
Time separation as a hidden variable to the Copenhagen school of quantum mechanics
The Bohr radius is a space-like separation between the proton and electron in
the hydrogen atom. According to the Copenhagen school of quantum mechanics, the
proton is sitting in the absolute Lorentz frame. If this hydrogen atom is
observed from a different Lorentz frame, there is a time-like separation
linearly mixed with the Bohr radius. Indeed, the time-separation is one of the
essential variables in high-energy hadronic physics where the hadron is a bound
state of the quarks, while thoroughly hidden in the present form of quantum
mechanics. It will be concluded that this variable is hidden in Feynman's rest
of the universe. It is noted first that Feynman's Lorentz-invariant
differential equation for the bound-state quarks has a set of solutions which
describe all essential features of hadronic physics. These solutions explicitly
depend on the time separation between the quarks. This set also forms the
mathematical basis for two-mode squeezed states in quantum optics, where both
photons are observable, but one of them can be treated a variable hidden in the
rest of the universe. The physics of this two-mode state can then be translated
into the time-separation variable in the quark model. As in the case of the
un-observed photon, the hidden time-separation variable manifests itself as an
increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the
Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be
published in one of the AIP Conference Proceedings serie
- …
