606 research outputs found
Recommended from our members
The Influence of geometrical and operational parameters on internal flow characteristics of Internally Mixing Twin-Fluid Y-Jet Atomizers
Internally mixing twin-fluid Y-jet atomizers are widely used in coal fired thermal power plants for start-up, oil-fired thermal power plants and industrial boilers. The flow through internally mixing Y-jet atomizers is numerically modeled using the compressible Navier-Stokes equations; Wall Modeled Large Eddy Simulations (WMLES) is used to resolve the turbulence with Large Eddy Simulations whereas the Prandtl Mixing Length Model is used for modeling the subgrid scale structures, which are affected by geometric and operational parameters. Moreover, the Volume-of-Fluid (VOF) method is used to capture the development and fragmentation of the liquid-gas interface within the Y-jet atomizer. The numerical results are compared with correlations available in open literature for the pressure drop; further results are presented for the multiphase flow regime maps available for vertical pipes. The results show that the mixing point pressure is strongly dependent on the mixing port diameter to airport diameter ratio, specifically for gas to liquid mass flowrate ratio (GLR) in the range 0.1 < GLR < 0.4; the mixing port length moderately affects the mixing point pressure while the angle between mixing and liquid ports is found not to have an appreciable effect. Moreover, it is found that the vertical pipe multiphase flow regime maps in the literature could be applied to the flow through the mixing port of the twin-fluid Y-jet atomizer. The main flow regimes found under the studied operational conditions are annular and wispy annular flow
Improved Semileptonic Form Factor Calculations in Lattice QCD
We investigate the computational efficiency of two stochastic based
alternatives to the Sequential Propagator Method used in Lattice QCD
calculations of heavy-light semileptonic form factors. In the first method, we
replace the sequential propagator, which couples the calculation of two of the
three propagators required for the calculation, with a stochastic propagator so
that the calculations of all three propagators are independent. This method is
more flexible than the Sequential Propagator Method but introduces stochastic
noise. We study the noise to determine when this method becomes competitive
with the Sequential Propagator Method, and find that for any practical
calculation it is competitive with or superior to the Sequential Propagator
Method. We also examine a second stochastic method, the so-called ``one-end
trick", concluding it is relatively inefficient in this context. The
investigation is carried out on two gauge field ensembles, using the
non-perturbatively improved Wilson-Sheikholeslami-Wohlert action with N_f=2
mass-degenerate sea quarks. The two ensembles have similar lattice spacings but
different sea quark masses. We use the first stochastic method to extract
-improved, matched lattice results for the semileptonic form
factors on the ensemble with lighter sea quarks, extracting f_+(0)
Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 1: Holistic design approach, design considerations and specifications
High-accuracy three-dimensional miniature components and microstructures are increasingly in demand in the sector of electro-optics, automotive, biotechnology, aerospace and information-technology industries. A rational approach to mechanical micro machining is to develop ultra-precision machines with small footprints. In part 1 of this two-part paper, the-state-of-the-art of ultra-precision machines with micro-machining capability is critically reviewed. The design considerations and specifications of a five-axis ultra-precision micro-milling machine—UltraMill—are discussed. Three prioritised design issues: motion accuracy, dynamic stiffness and thermal stability, formulate the holistic design approach for UltraMill. This approach has been applied to the development of key machine components and their integration so as to achieve high accuracy and nanometer surface finish
Core reconstruction in pseudopotential calculations
A new method is presented for obtaining all-electron results from a
pseudopotential calculation. This is achieved by carrying out a localised
calculation in the region of an atomic nucleus using the embedding potential
method of Inglesfield [J.Phys. C {\bf 14}, 3795 (1981)]. In this method the
core region is \emph{reconstructed}, and none of the simplifying approximations
(such as spherical symmetry of the charge density/potential or frozen core
electrons) that previous solutions to this problem have required are made. The
embedding method requires an accurate real space Green function, and an
analysis of the errors introduced in constructing this from a set of numerical
eigenstates is given. Results are presented for an all-electron reconstruction
of bulk aluminium, for both the charge density and the density of states.Comment: 14 pages, 5 figure
Interatomic potentials for atomistic simulations of the Ti-Al system
Semi-empirical interatomic potentials have been developed for Al, alpha-Ti,
and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large
database of experimental as well as ab-initio data. The ab-initio calculations
were performed by the linear augmented plane wave (LAPW) method within the
density functional theory to obtain the equations of state for a number of
crystal structures of the Ti-Al system. Some of the calculated LAPW energies
were used for fitting the potentials while others for examining their quality.
The potentials correctly predict the equilibrium crystal structures of the
phases and accurately reproduce their basic lattice properties. The potentials
are applied to calculate the energies of point defects, surfaces, planar faults
in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al
system, the proposed potentials provide reasonable description of the lattice
thermal expansion, demonstrating their usefulness in the molecular dynamics or
Monte Carlo studies at high temperatures. The energy along the tetragonal
deformation path (Bain transformation) in gamma-TiAl calculated with the EAM
potential is in a fairly good agreement with LAPW calculations. Equilibrium
point defect concentrations in gamma-TiAl are studied using the EAM potential.
It is found that antisite defects strongly dominate over vacancies at all
compositions around stoichiometry, indicating that gamm-TiAl is an antisite
disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press
Quality assurance guidelines for superficial hyperthermia clinical trials: II. Technical requirements for heating devices
Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle
Recommended from our members
Atomization Mechanism of Internally Mixing Twin-Fluid Y-Jet Atomizer
The atomization mechanism of the gas-liquid multiphase flow through an internally mixing twin-fluid Y-jet atomizer has been studied by examining both the internal and external flow patterns. Superheated steam and light fuel oil (LFO) are used as working fluids. The flow is numerically modeled using the compressible Navier-Stokes equations; the hybrid large eddy simulation approach through wall-modeled large eddy simulations (WMLES) is used to resolve the turbulence with the large eddy simulations, whereas the Prandtl mixing length model is used for modeling the subgrid-scale structures, which are affected by operational parameters. A volume-of-fluid to discrete phase model (VOF-to-DPM) transition mechanism is utilized along with dynamic solution-adaptive mesh refinement to predict the initial development and fragmentation of the gas-liquid interface through VOF formulations on a sufficiently fine mesh, while DPM is used to predict the dispersed part of the spray on the coarser grid. Two operational parameters, namely, gas-to-liquid mass flow rate ratio (GLR) and liquid-to-gas momentum ratio, are compared; the latter is found to be an appropriate operational parameter to describe both the internal flow and atomization characteristics. It is confirmed that the variation in the flow patterns within the mixing port of the atomizer coincides with the variation of the spatial distribution of the spray drops
Micro-manufacturing : research, technology outcomes and development issues
Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing
Stabilisation of metastable polymorphs: the case of paracetamol form III
YesThe design of a melt synthesis of the first air-stable formulation of the metastable form III of paracetamol is derived from thermo-spectroscopic and thermo-diffraction experiments. Melt crystallisation in the presence of β-1,4-saccharides produces form III selectively and the excipients appear to act as stabilising ‘active’ templates of the metastable polymorph.This article is part of themed collection: Pharmaceutical Solids
A qualitative study on the effects of psychoactive substance use upon artistic creativity
Background: Psychoactive substance use has often been claimed to help generate and facilitate the artistic creative process.
Aims: The present study explored the role of artists’ substance use in their creative processes and their efforts to balance between enhancement and relaxation.
Methods: Semi-structured interviews concerning the artistic creative process and the role of psychoactive substance use were recorded with 72 artists and analyzed using content analysis. The participants were classified according to their substance use in three groups (Cannabis Group, Alcohol Group, and Control Group).
Results: Results show that both alcohol and cannabis were used to facilitate creativity and the emotional states that are necessary for the artistic creative process. Participants in the Control group reported that listening to music might function as a mind-altering tool. It was also found that for some artists, substance use is not only characteristic to creation, but it is also part of their everyday lives.
Conclusion: Artists are aware of the balancing phenomenon during the artistic creative process. Whether psychoactive substance(s) or other environmental stimuli (such as music) are used to reach the required effect appears to depend upon the individual
- …
