4,210 research outputs found
Quantum Trajectory Analysis of the Two-Mode Three-Level Atom Microlaser
We consider a single atom laser (microlaser) operating on three-level atoms
interacting with a two-mode cavity. The quantum statistical properties of the
cavity field at steady state are investigated by the quantum trajectory method
which is a Monte Carlo simulation applied to open quantum systems. It is found
that a steady state solution exists even when the detailed balance condition is
not guaranteed. The differences between a single mode microlaser and a two-mode
microlaser are highlighted. The second-order correlation function g^2(T) of a
single mode is studied and special attention is paid to the one-photon trapping
state, for which a simple formula is derived for its correlation function. We
show the effects of the velocity spread of the atoms used to pump the
microlaser cavity on the second-order correlation function, trapping states,
and phase transitions of the cavity field
Scientific investigations in the Gulf of Mexico and Caribbean Sea during the 1974-1975 Calypso cruise, parts 1 and 2
The distribution and concentrations of the standing crop of phytoplankton and nutrient salts in the Gulf of Mexico and the Caribbean Sea were investigated to provide ground truth for correlating temperature and chlorophyll-a measurements with observations from NASA U-2 aircraft equipped with specially designed sensors for measuring ocean color phenomena. The physical, chemical, and biological data obtained is summarized. Sampling procedures and methods used for determining plant pigments, species composition of phytoplankton, nutrient salt analysis, and the euphotic zones are described
Isolation of avian influenza H5N1 virus from vaccinated commercial layer flock in Egypt
Uninterrupted transmission of highly pathogenic avian influenza virus (HPAIV)
H5N1 of clade 2.2.1 in Egypt since 2006 resulted in establishment of two main
genetic clusters. The 2.2.1/C group where all recent human and majority of
backyard origin viruses clustered together, meanwhile the majority of viruses
derived from vaccinated poultry in commercial farms grouped in 2.2.1.1 clade.
In the present investigation, an HPAIV H5N1 was isolated from twenty weeks old
layers chickens that were vaccinated with a homologous H5N1 vaccine at 1, 7
and 16 weeks old. At twenty weeks of age, birds showed cyanosis of comb and
wattle, decrease in egg production and up to 27% mortality. Examined serum
samples showed low antibody titer in HI test (Log2 3.2 ± 4.2). The
hemagglutinin (HA) and neuraminidase (NA) genes of the isolated virus were
closely related to viruses in 2.2.1/C group isolated from poultry in live bird
market (LBM) and backyards or from infected people. Conspicuous mutations in
the HA and NA genes including a deletion within the receptor binding domain in
the HA globular head region were observed. Despite repeated vaccination of
layer chickens using a homologous H5N1 vaccine, infection with HPAIV H5N1
resulted in significant morbidity and mortality. In endemic countries like
Egypt, rigorous control measures including enforcement of biosecurity, culling
of infected birds and constant update of vaccine virus strains are highly
required to prevent circulation of HPAIV H5N1 between backyard birds,
commercial poultry, LBM and humans
Recommended from our members
Cardiac Biomarkers and Risk of Atrial Fibrillation in Chronic Kidney Disease: The CRIC Study.
Background We tested associations of cardiac biomarkers of myocardial stretch, injury, inflammation, and fibrosis with the risk of incident atrial fibrillation (AF) in a prospective study of chronic kidney disease patients. Methods and Results The study sample was 3053 participants with chronic kidney disease in the multicenter CRIC (Chronic Renal Insufficiency Cohort) study who were not identified as having AF at baseline. Cardiac biomarkers, measured at baseline, were NT-proBNP (N-terminal pro-B-type natriuretic peptide), high-sensitivity troponin T, galectin-3, growth differentiation factor-15, and soluble ST-2. Incident AF ("AF event") was defined as a hospitalization for AF. During a median follow-up of 8 years, 279 (9%) participants developed a new AF event. In adjusted models, higher baseline log-transformed NT-proBNP (N-terminal pro-B-type natriuretic peptide) was associated with incident AF (adjusted hazard ratio [HR] per SD higher concentration: 2.11; 95% CI, 1.75, 2.55), as was log-high-sensitivity troponin T (HR 1.42; 95% CI, 1.20, 1.68). These associations showed a dose-response relationship in categorical analyses. Although log-soluble ST-2 was associated with AF risk in continuous models (HR per SD higher concentration 1.35; 95% CI, 1.16, 1.58), this association was not consistent in categorical analyses. Log-galectin-3 (HR 1.05; 95% CI, 0.91, 1.22) and log-growth differentiation factor-15 (HR 1.16; 95% CI, 0.96, 1.40) were not significantly associated with incident AF. Conclusions We found strong associations between higher NT-proBNP (N-terminal pro-B-type natriuretic peptide) and high-sensitivity troponin T concentrations, and the risk of incident AF in a large cohort of participants with chronic kidney disease. Increased atrial myocardial stretch and myocardial cell injury may be implicated in the high burden of AF in patients with chronic kidney disease
Electron-lattice kinetics of metals heated by ultrashort laser pulses
We propose a kinetic model of transient nonequilibrium phenomena in metals
exposed to ultrashort laser pulses when heated electrons affect the lattice
through direct electron-phonon interaction. This model describes the
destruction of a metal under intense laser pumping. We derive the system of
equations for the metal, which consists of hot electrons and a cold lattice.
Hot electrons are described with the help of the Boltzmann equation and
equation of thermoconductivity. We use the equations of motion for lattice
displacements with the electron force included. The lattice deformation is
estimated immediately after the laser pulse up to the time of electron
temperature relaxation. An estimate shows that the ablation regime can be
achieved.Comment: 7 pages; Revtex. to appear in JETP 88, #1 (1999
Diagnosis of Middle Atmosphere Climate Sensitivity by the Climate Feedback Response Analysis Method
We present a new method to diagnose the middle atmosphere climate sensitivity by extending the Climate Feedback-Response Analysis Method (CFRAM) for the coupled atmosphere-surface system to the middle atmosphere. The Middle atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves the CFRAM unique feature of an additive property for which the sum of all partial temperature changes due to variations in external forcing and feedback processes equals the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. MCFRAM is applied to both measurements and model output fields to diagnose the middle atmosphere climate sensitivity. It is found that the largest component of the middle atmosphere temperature response to the 11-year solar cycle (solar maximum vs. solar minimum) is directly from the partial temperature change due to the variation of the input solar flux. Increasing CO2 always cools the middle atmosphere with time whereas partial temperature change due to O3 variation could be either positive or negative. The partial temperature changes due to different feedbacks show distinctly different spatial patterns. The thermally driven globally averaged partial temperature change due to all radiative processes is approximately equal to the observed temperature change, ranging from 0.5 K near 70 km from the near solar maximum to the solar minimum
Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution
In minimal supersymmetric models the -penguin usually provides
sub-dominant contributions to charged lepton flavour violating observables. In
this study, we consider the supersymmetric inverse seesaw in which the
non-minimal particle content allows for dominant contributions of the
-penguin to several lepton flavour violating observables. In particular, and
due to the low-scale (TeV) seesaw, the penguin contribution to, for instance,
\Br(\mu \to 3e) and conversion in nuclei, allows to render some of
these observables within future sensitivity reach. Moreover, we show that in
this framework, the -penguin exhibits the same non-decoupling behaviour
which had previously been identified in flavour violating Higgs decays in the
Minimal Supersymmetric Standard Model.Comment: 29 pages, 9 figures, 4 tables; v2: minor corrections, version to
appear in JHE
Prospects for terahertz imaging the human skin cancer with the help of gold-nanoparticles-based terahertz-to-infrared converter
The design is suggested, and possible operation parameters are discussed, of
an instrument to inspect a skin cancer tumour in the terahertz (THz) range,
transferring the image into the infrared (IR) and making it visible with the
help of standard IR camera. The central element of the device is the THz-to-IR
converter, a Teflon or silicon film matrix with embedded 8.5 nm diameter gold
nanoparticles. The use of external THz source for irradiating the biological
tissue sample is presumed. The converter's temporal characteristics enable its
performance in a real-time scale. The details of design suited for the
operation in transmission mode (in vitro) or on the human skin in reflection
mode {in vivo) are specified.Comment: To be published in the proceedings of the FANEM2018 workshop - Minsk,
3-5 June 201
Two loop electroweak corrections to and in the B-LSSM
The rare decays and are important to research new physics beyond standard model. In
this work, we investigate two loop electroweak corrections to and in the minimal
supersymmetric extension of the SM with local gauge symmetry (B-LSSM),
under a minimal flavor violating assumption for the soft breaking terms. In
this framework, new particles and new definition of squarks can affect the
theoretical predictions of these two processes, with respect to the MSSM.
Considering the constraints from updated experimental data, the numerical
results show that the B-LSSM can fit the experimental data for the branching
ratios of and . The
results of the rare decays also further constrain the parameter space of the
B-LSSM.Comment: 33 pages, 9 figures, Published in EPJ
- …
