1,091 research outputs found
Testing surface area with arbitrary accuracy
Recently, Kothari et al.\ gave an algorithm for testing the surface area of
an arbitrary set . Specifically, they gave a randomized
algorithm such that if 's surface area is less than then the algorithm
will accept with high probability, and if the algorithm accepts with high
probability then there is some perturbation of with surface area at most
. Here, is a dimension-dependent constant which is
strictly larger than 1 if , and grows to as .
We give an improved analysis of Kothari et al.'s algorithm. In doing so, we
replace the constant with for arbitrary. We
also extend the algorithm to more general measures on Riemannian manifolds.Comment: 5 page
A Mathematical Theory of Stochastic Microlensing II. Random Images, Shear, and the Kac-Rice Formula
Continuing our development of a mathematical theory of stochastic
microlensing, we study the random shear and expected number of random lensed
images of different types. In particular, we characterize the first three
leading terms in the asymptotic expression of the joint probability density
function (p.d.f.) of the random shear tensor at a general point in the lens
plane due to point masses in the limit of an infinite number of stars. Up to
this order, the p.d.f. depends on the magnitude of the shear tensor, the
optical depth, and the mean number of stars through a combination of radial
position and the stars' masses. As a consequence, the p.d.f.s of the shear
components are seen to converge, in the limit of an infinite number of stars,
to shifted Cauchy distributions, which shows that the shear components have
heavy tails in that limit. The asymptotic p.d.f. of the shear magnitude in the
limit of an infinite number of stars is also presented. Extending to general
random distributions of the lenses, we employ the Kac-Rice formula and Morse
theory to deduce general formulas for the expected total number of images and
the expected number of saddle images. We further generalize these results by
considering random sources defined on a countable compact covering of the light
source plane. This is done to introduce the notion of {\it global} expected
number of positive parity images due to a general lensing map. Applying the
result to microlensing, we calculate the asymptotic global expected number of
minimum images in the limit of an infinite number of stars, where the stars are
uniformly distributed. This global expectation is bounded, while the global
expected number of images and the global expected number of saddle images
diverge as the order of the number of stars.Comment: To appear in JM
Fractal dimension crossovers in turbulent passive scalar signals
The fractal dimension of turbulent passive scalar signals is
calculated from the fluid dynamical equation. depends on the
scale. For small Prandtl (or Schmidt) number one gets two ranges,
for small scale r and =5/3 for large r, both
as expected. But for large one gets a third, intermediate range in
which the signal is extremely wrinkled and has . In that
range the passive scalar structure function has a plateau. We
calculate the -dependence of the crossovers. Comparison with a numerical
reduced wave vector set calculation gives good agreement with our predictions.Comment: 7 pages, Revtex, 3 figures (postscript file on request
On a microcanonical relation between continuous and discrete spin models
A relation between a class of stationary points of the energy landscape of
continuous spin models on a lattice and the configurations of a Ising model
defined on the same lattice suggests an approximate expression for the
microcanonical density of states. Based on this approximation we conjecture
that if a O(n) model with ferromagnetic interactions on a lattice has a phase
transition, its critical energy density is equal to that of the n = 1 case,
i.e., a system of Ising spins with the same interactions. The conjecture holds
true in the case of long-range interactions. For nearest-neighbor interactions,
numerical results are consistent with the conjecture for n=2 and n=3 in three
dimensions. For n=2 in two dimensions (XY model) the conjecture yields a
prediction for the critical energy of the Berezinskij-Kosterlitz-Thouless
transition, which would be equal to that of the two-dimensional Ising model. We
discuss available numerical data in this respect.Comment: 5 pages, no figure
Regularity of higher codimension area minimizing integral currents
This lecture notes are an expanded version of the course given at the
ERC-School on Geometric Measure Theory and Real Analysis, held in Pisa,
September 30th - October 30th 2013. The lectures aim to explain the main steps
of a new proof of the partial regularity of area minimizing integer rectifiable
currents in higher codimension, due originally to F. Almgren, which is
contained in a series of papers in collaboration with C. De Lellis (University
of Zurich).Comment: This text will appear in "Geometric Measure Theory and Real
Analysis", pp. 131--192, Proceedings of the ERC school in Pisa (2013), L.
Ambrosio Ed., Edizioni SNS (CRM Series
Three-manifold invariant from functional integration
We give a precise definition and produce a path-integral computation of the
normalized partition function of the abelian U(1) Chern-Simons field theory
defined in a general closed oriented 3-manifold. We use the Deligne-Beilinson
formalism, we sum over the inequivalent U(1) principal bundles over the
manifold and, for each bundle, we integrate over the gauge orbits of the
associated connection 1- forms. The result of the functional integration is
compared with the abelian U(1) Reshetikhin-Turaev surgery invariant
A Theorem on the origin of Phase Transitions
For physical systems described by smooth, finite-range and confining
microscopic interaction potentials V with continuously varying coordinates, we
announce and outline the proof of a theorem that establishes that unless the
equipotential hypersurfaces of configuration space \Sigma_v ={(q_1,...,q_N)\in
R^N | V(q_1,...,q_N) = v}, v \in R, change topology at some v_c in a given
interval [v_0, v_1] of values v of V, the Helmoltz free energy must be at least
twice differentiable in the corresponding interval of inverse temperature
(\beta(v_0), \beta(v_1)) also in the N -> \infty and the
{\Sigma_v}_{v > v_c}, which is the consequence of the existence of critical
points of V on \Sigma_{v=v_c}, that is points where \nabla V=0.Comment: 10 pages, Statistical Mechanics, Phase Transitions, General Theory.
Phys. Rev. Lett., in pres
Uncertainty inequalities on groups and homogeneous spaces via isoperimetric inequalities
We prove a family of uncertainty inequalities on fairly general groups
and homogeneous spaces, both in the smooth and in the discrete setting. The
crucial point is the proof of the endpoint, which is derived from a
general weak isoperimetric inequality.Comment: 17 page
A refined TALDICE-1a age scale from 55 to 112 ka before present for the Talos Dome ice core based on high-resolution methane measurements
A precise synchronization of different climate records is indispensable for a correct dynamical interpretation of paleoclimatic data. A chronology for the TALDICE ice core from the Ross Sea sector of East Antarctica has recently been presented based on methane synchronization with Greenland and the EDC ice cores and &delta;<sup>18</sup>O<sub>ice</sub> synchronization with EDC in the bottom part (TALDICE-1). Using new high-resolution methane data obtained with a continuous flow analysis technique, we present a refined age scale for the age interval from 55–112 thousand years (ka) before present, where TALDICE is synchronized with EDC. New and more precise tie points reduce the uncertainties of the age scale from up to 1900 yr in TALDICE-1 to below 1100 yr over most of the refined interval and shift the Talos Dome dating to significantly younger ages during the onset of Marine Isotope Stage 3. Thus, discussions of climate dynamics at sub-millennial time scales are now possible back to 110 ka, in particular during the inception of the last ice age. Calcium data of EDC and TALDICE are compared to show the impact of the refinement to the synchronization of the two ice cores not only for the gas but also for the ice age scale
Integral geometry of complex space forms
We show how Alesker's theory of valuations on manifolds gives rise to an
algebraic picture of the integral geometry of any Riemannian isotropic space.
We then apply this method to give a thorough account of the integral geometry
of the complex space forms, i.e. complex projective space, complex hyperbolic
space and complex euclidean space. In particular, we compute the family of
kinematic formulas for invariant valuations and invariant curvature measures in
these spaces. In addition to new and more efficient framings of the tube
formulas of Gray and the kinematic formulas of Shifrin, this approach yields a
new formula expressing the volumes of the tubes about a totally real
submanifold in terms of its intrinsic Riemannian structure. We also show by
direct calculation that the Lipschitz-Killing valuations stabilize the subspace
of invariant angular curvature measures, suggesting the possibility that a
similar phenomenon holds for all Riemannian manifolds. We conclude with a
number of open questions and conjectures.Comment: 68 pages; minor change
- …
