1,354 research outputs found

    Limit cycles in the presence of convection, a first order analysis

    Get PDF
    We consider a diffusion model with limit cycle reaction functions. In an unbounded domain, diffusion spreads pattern outwards from the source. Convection adds instability to the reaction-diffusion system. We see the result of the instability in a readiness to create pattern. In the case of strong convection, we consider that the first-order approximation may be valid for some aspects of the solution behaviour. We employ the method of Riemann invariants and rescaling to transform the reduced system into one invariant under parameter change. We carry out numerical experiments to test our analysis. We find that most aspects of the solution do not comply with this, but we find one significant characteristic which is approximately first order. We consider the correspondence of the Partial Differential Equation with the Ordinary Differential Equation along rays from the initiation point in the transformed system. This yields an understanding of the behaviour

    Obtaining Breathers in Nonlinear Hamiltonian Lattices

    Full text link
    We present a numerical method for obtaining high-accuracy numerical solutions of spatially localized time-periodic excitations on a nonlinear Hamiltonian lattice. We compare these results with analytical considerations of the spatial decay. We show that nonlinear contributions have to be considered, and obtain very good agreement between the latter and the numerical results. We discuss further applications of the method and results.Comment: 21 pages (LaTeX), 8 figures in ps-files, tar-compressed uuencoded file, Physical Review E, in pres

    The phase plane of moving discrete breathers

    Full text link
    We study anharmonic localization in a periodic five atom chain with quadratic-quartic spring potential. We use discrete symmetries to eliminate the degeneracies of the harmonic chain and easily find periodic orbits. We apply linear stability analysis to measure the frequency of phonon-like disturbances in the presence of breathers and to analyze the instabilities of breathers. We visualize the phase plane of breather motion directly and develop a technique for exciting pinned and moving breathers. We observe long-lived breathers that move chaotically and a global transition to chaos that prevents forming moving breathers at high energies.Comment: 8 pages text, 4 figures, submitted to Physical Review Letters. See http://www.msc.cornell.edu/~houle/localization

    Dimension dependent energy thresholds for discrete breathers

    Full text link
    Discrete breathers are time-periodic, spatially localized solutions of the equations of motion for a system of classical degrees of freedom interacting on a lattice. We study the existence of energy thresholds for discrete breathers, i.e., the question whether, in a certain system, discrete breathers of arbitrarily low energy exist, or a threshold has to be overcome in order to excite a discrete breather. Breather energies are found to have a positive lower bound if the lattice dimension d is greater than or equal to a certain critical value d_c, whereas no energy threshold is observed for d<d_c. The critical dimension d_c is system dependent and can be computed explicitly, taking on values between zero and infinity. Three classes of Hamiltonian systems are distinguished, being characterized by different mechanisms effecting the existence (or non-existence) of an energy threshold.Comment: 20 pages, 5 figure

    Energy thresholds for discrete breathers in one-, two- and three-dimensional lattices

    Full text link
    Discrete breathers are time-periodic, spatially localized solutions of equations of motion for classical degrees of freedom interacting on a lattice. They come in one-parameter families. We report on studies of energy properties of breather families in one-, two- and three-dimensional lattices. We show that breather energies have a positive lower bound if the lattice dimension of a given nonlinear lattice is greater than or equal to a certain critical value. These findings could be important for the experimental detection of discrete breathers.Comment: 10 pages, LaTeX, 4 figures (ps), Physical Review Letters, in prin

    Discrete breathers in classical spin lattices

    Full text link
    Discrete breathers (nonlinear localised modes) have been shown to exist in various nonlinear Hamiltonian lattice systems. In the present paper we study the dynamics of classical spins interacting via Heisenberg exchange on spatial dd-dimensional lattices (with and without the presence of single-ion anisotropy). We show that discrete breathers exist for cases when the continuum theory does not allow for their presence (easy-axis ferromagnets with anisotropic exchange and easy-plane ferromagnets). We prove the existence of localised excitations using the implicit function theorem and obtain necessary conditions for their existence. The most interesting case is the easy-plane one which yields excitations with locally tilted magnetisation. There is no continuum analogue for such a solution and there exists an energy threshold for it, which we have estimated analytically. We support our analytical results with numerical high-precision computations, including also a stability analysis for the excitations.Comment: 15 pages, 12 figure

    Discrete breathers in systems with homogeneous potentials - analytic solutions

    Full text link
    We construct lattice Hamiltonians with homogeneous interaction potentials which allow for explicit breather solutions. Especially we obtain exponentially localized solutions for dd-dimensional lattices with d=2,3d=2,3.Comment: 10 page

    Vortex and translational currents due to broken time-space symmetries

    Full text link
    We consider the classical dynamics of a particle in a d=2,3d=2,3-dimensional space-periodic potential under the influence of time-periodic external fields with zero mean. We perform a general time-space symmetry analysis and identify conditions, when the particle will generate a nonzero averaged translational and vortex currents. We perform computational studies of the equations of motion and of corresponding Fokker-Planck equations, which confirm the symmetry predictions. We address the experimentally important issue of current control. Cold atoms in optical potentials and magnetic traps are among possible candidates to observe these findings experimentally.Comment: 4 pages, 2 figure

    Observation of breathers in Josephson ladders

    Full text link
    We report on the observation of spatially-localized excitations in a ladder of small Josephson junctions. The excitations are whirling states which persist under a spatially-homogeneous force due to the bias current. These states of the ladder are visualized using a low temperature scanning laser microscopy. We also compute breather solutions with high accuracy in corresponding model equations. The stability analysis of these solutions is used to interpret the measured patterns in the I-V characteristics
    corecore