4,000 research outputs found
Permalloy-based carbon nanotube spin-valve
In this Letter we demonstrate that Permalloy (Py), a widely used Ni/Fe alloy,
forms contacts to carbon nanotubes (CNTs) that meet the requirements for the
injection and detection of spin-polarized currents in carbon-based spintronic
devices. We establish the material quality and magnetization properties of Py
strips in the shape of suitable electrical contacts and find a sharp
magnetization switching tunable by geometry in the anisotropic
magnetoresistance (AMR) of a single strip at cryogenic temperatures. In
addition, we show that Py contacts couple strongly to CNTs, comparable to Pd
contacts, thereby forming CNT quantum dots at low temperatures. These results
form the basis for a Py-based CNT spin-valve exhibiting very sharp resistance
switchings in the tunneling magnetoresistance, which directly correspond to the
magnetization reversals in the individual contacts observed in AMR experiments.Comment: 3 page
Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO
Gravitational waves (GWs) from the inspiral of a neutron star (NS) or
stellar-mass black hole (BH) into an intermediate-mass black hole (IMBH) with
mass between ~50 and ~350 solar masses may be detectable by the planned
advanced generation of ground-based GW interferometers. Such intermediate mass
ratio inspirals (IMRIs) are most likely to be found in globular clusters. We
analyze four possible IMRI formation mechanisms: (1) hardening of an NS-IMBH or
BH-IMBH binary via three-body interactions, (2) hardening via Kozai resonance
in a hierarchical triple system, (3) direct capture, and (4) inspiral of a
compact object from a tidally captured main-sequence star; we also discuss
tidal effects when the inspiraling object is an NS. For each mechanism we
predict the typical eccentricities of the resulting IMRIs. We find that IMRIs
will have largely circularized by the time they enter the sensitivity band of
ground-based detectors. Hardening of a binary via three-body interactions,
which is likely to be the dominant mechanism for IMRI formation, yields
eccentricities under 10^-4 when the GW frequency reaches 10 Hz. Even among
IMRIs formed via direct captures, which can have the highest eccentricities,
around 90% will circularize to eccentricities under 0.1 before the GW frequency
reaches 10 Hz. We estimate the rate of IMRI coalescences in globular clusters
and the sensitivity of a network of three Advanced LIGO detectors to the
resulting GWs. We show that this detector network may see up to tens of IMRIs
per year, although rates of one to a few per year may be more plausible. We
also estimate the loss in signal-to-noise ratio that will result from using
circular IMRI templates for data analysis and find that, for the eccentricities
we expect, this loss is negligible.Comment: Accepted for publication in ApJ; revised version reflects changes
made to the article during the acceptance proces
Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on the grain scale
This work presents a method of mapping deformation-related sublimation patterns, formed on the surface of ice specimens, at microscopic resolution (3-4 gm pixel(-1)). The method is based on the systematic sublimation of a microtomed piece of ice, prepared either as a thick or a thin section. The mapping system consists of an optical microscope, a CCD video camera and a computer-controlled xy-stage. About 1500 images are needed to build a high-resolution mosaic map of a 4.5 x 9 cm section. Mosaics and single images are used to derive a variety of statistical data about air inclusions (air bubbles and air clathrate hydrates), texture (grain size, shape and orientation) and deformation-related features (subgrain boundaries, slip bands, subgrain islands and loops, pinned and bulged grain boundaries). The most common sublimation patterns are described, and their relevance for the deformation of polar ice is briefly discussed
On Convergence of the Inexact Rayleigh Quotient Iteration with the Lanczos Method Used for Solving Linear Systems
For the Hermitian inexact Rayleigh quotient iteration (RQI), the author has
established new local general convergence results, independent of iterative
solvers for inner linear systems. The theory shows that the method locally
converges quadratically under a new condition, called the uniform positiveness
condition. In this paper we first consider the local convergence of the inexact
RQI with the unpreconditioned Lanczos method for the linear systems. Some
attractive properties are derived for the residuals, whose norms are
's, of the linear systems obtained by the Lanczos method. Based on
them and the new general convergence results, we make a refined analysis and
establish new local convergence results. It is proved that the inexact RQI with
Lanczos converges quadratically provided that with a
constant . The method is guaranteed to converge linearly provided
that is bounded by a small multiple of the reciprocal of the
residual norm of the current approximate eigenpair. The results are
fundamentally different from the existing convergence results that always
require , and they have a strong impact on effective
implementations of the method. We extend the new theory to the inexact RQI with
a tuned preconditioned Lanczos for the linear systems. Based on the new theory,
we can design practical criteria to control to achieve quadratic
convergence and implement the method more effectively than ever before.
Numerical experiments confirm our theory.Comment: 20 pages, 8 figures. arXiv admin note: text overlap with
arXiv:0906.223
Bounding sup-norms of cusp forms of large level
Let f be an -normalized weight zero Hecke-Maass cusp form of square-free
level N, character and Laplacian eigenvalue . It is
shown that , from which the hybrid
bound (for some
) is derived. The first bound holds also for where F
is a holomorphic cusp form of weight k with the implied constant now depending
on k.Comment: version 3: substantially revised versio
Minimum Conductivity and Evidence for Phase Transitions in Ultra-clean Bilayer Graphene
Bilayer graphene (BLG) at the charge neutrality point (CNP) is strongly
susceptible to electronic interactions, and expected to undergo a phase
transition into a state with spontaneous broken symmetries. By systematically
investigating a large number of singly- and doubly-gated bilayer graphene (BLG)
devices, we show that an insulating state appears only in devices with high
mobility and low extrinsic doping. This insulating state has an associated
transition temperature Tc~5K and an energy gap of ~3 meV, thus strongly
suggesting a gapped broken symmetry state that is destroyed by very weak
disorder. The transition to the intrinsic broken symmetry state can be tuned by
disorder, out-of-plane electric field, or carrier density
Extreme mass ratio inspiral rates: dependence on the massive black hole mass
We study the rate at which stars spiral into a massive black hole (MBH) due
to the emission of gravitational waves (GWs), as a function of the mass M of
the MBH. In the context of our model, it is shown analytically that the rate
approximately depends on the MBH mass as M^{-1/4}. Numerical simulations
confirm this result, and show that for all MBH masses, the event rate is
highest for stellar black holes, followed by white dwarfs, and lowest for
neutron stars. The Laser Interferometer Space Antenna (LISA) is expected to see
hundreds of these extreme mass ratio inspirals per year. Since the event rate
derived here formally diverges as M->0, the model presented here cannot hold
for MBHs of masses that are too low, and we discuss what the limitations of the
model are.Comment: Accepted to CQG, special LISA issu
Superconductivity enhanced conductance fluctuations in few layer graphene nanoribbons
We investigate the mesoscopic disorder induced rms conductance variance
in a few layer graphene nanoribbon (FGNR) contacted by two
superconducting (S) Ti/Al contacts. By sweeping the back-gate voltage, we
observe pronounced conductance fluctuations superimposed on a linear background
of the two terminal conductance G. The linear gate-voltage induced response can
be modeled by a set of inter-layer and intra-layer capacitances.
depends on temperature T and source-drain voltage .
increases with decreasing T and . When lowering , a
pronounced cross-over at a voltage corresponding to the superconducting energy
gap is observed. For |V_{sd}|\ltequiv \Delta the fluctuations are
markedly enhanced. Expressed in the conductance variance of one
graphene-superconducutor (G-S) interface, values of 0.58 e^2/h are obtained at
the base temperature of 230 mK. The conductance variance in the sub-gap region
are larger by up to a factor of 1.4-1.8 compared to the normal state. The
observed strong enhancement is due to phase coherent charge transfer caused by
Andreev reflection at the nanoribbon-superconductor interface.Comment: 15 pages, 5 figure
- …
