1,488 research outputs found
Top-philic Vector-Like Portal to Scalar Dark Matter
We investigate the phenomenology of scalar singlet dark matter candidates
that couple dominantly to the Standard Model via a Yukawa interaction with the
top quark and a colored vector-like fermion. We estimate the viability of this
vector-like portal scenario with respect to the most recent bounds from dark
matter direct and indirect detection, as well as to dark matter and vector-like
mediator searches at colliders. Moreover, we take QCD radiative corrections
into account in all our theoretical calculations. This work complements
analyses related both to models featuring a scalar singlet coupled through a
vector-like portal to light quarks, and to scenarios in which the dark matter
is a Majorana singlet coupled to the Standard Model through scalar colored
particles (akin to simplified models inspired by supersymmetry). Our study puts
especially forward the complementarity of different search strategies from
different contexts, and we show that current experiments allow for testing dark
matter masses ranging up to 700 GeV and mediator masses ranging up to 6 TeV.Comment: 15 pages, 11 figures; version accepted by PR
Critical behavior of a cellular automaton highway traffic model
We derive the critical behavior of a CA traffic flow model using an order
parameter breaking the symmetry of the jam-free phase. Random braking appears
to be the symmetry-breaking field conjugate to the order parameter. For
, we determine the values of the critical exponents ,
and using an order-3 cluster approximation and computer
simulations. These critical exponents satisfy a scaling relation, which can be
derived assuming that the order parameter is a generalized homogeneous function
of and p in the vicinity of the phase transition point.Comment: 6 pages, 12 figure
Graded Differential Geometry of Graded Matrix Algebras
We study the graded derivation-based noncommutative differential geometry of
the -graded algebra of complex -matrices
with the ``usual block matrix grading'' (for ). Beside the
(infinite-dimensional) algebra of graded forms the graded Cartan calculus,
graded symplectic structure, graded vector bundles, graded connections and
curvature are introduced and investigated. In particular we prove the
universality of the graded derivation-based first-order differential calculus
and show, that is a ``noncommutative graded manifold'' in a
stricter sense: There is a natural body map and the cohomologies of and its body coincide (as in the case of ordinary graded manifolds).Comment: 21 pages, LATE
Cellular automaton rules conserving the number of active sites
This paper shows how to determine all the unidimensional two-state cellular
automaton rules of a given number of inputs which conserve the number of active
sites. These rules have to satisfy a necessary and sufficient condition. If the
active sites are viewed as cells occupied by identical particles, these
cellular automaton rules represent evolution operators of systems of identical
interacting particles whose total number is conserved. Some of these rules,
which allow motion in both directions, mimic ensembles of one-dimensional
pseudo-random walkers. Numerical evidence indicates that the corresponding
stochastic processes might be non-Gaussian.Comment: 14 pages, 5 figure
Hysteresis phenomenon in deterministic traffic flows
We study phase transitions of a system of particles on the one-dimensional
integer lattice moving with constant acceleration, with a collision law
respecting slower particles. This simple deterministic ``particle-hopping''
traffic flow model being a straightforward generalization to the well known
Nagel-Schreckenberg model covers also a more recent slow-to-start model as a
special case. The model has two distinct ergodic (unmixed) phases with two
critical values. When traffic density is below the lowest critical value, the
steady state of the model corresponds to the ``free-flowing'' (or ``gaseous'')
phase. When the density exceeds the second critical value the model produces
large, persistent, well-defined traffic jams, which correspond to the
``jammed'' (or ``liquid'') phase. Between the two critical values each of these
phases may take place, which can be interpreted as an ``overcooled gas'' phase
when a small perturbation can change drastically gas into liquid. Mathematical
analysis is accomplished in part by the exact derivation of the life-time of
individual traffic jams for a given configuration of particles.Comment: 22 pages, 6 figures, corrected and improved version, to appear in the
Journal of Statistical Physic
Cyclic Statistics In Three Dimensions
While 2-dimensional quantum systems are known to exhibit non-permutation,
braid group statistics, it is widely expected that quantum statistics in
3-dimensions is solely determined by representations of the permutation group.
This expectation is false for certain 3-dimensional systems, as was shown by
the authors of ref. [1,2,3]. In this work we demonstrate the existence of
``cyclic'', or , {\it non-permutation group} statistics for a system of n
> 2 identical, unknotted rings embedded in . We make crucial use of a
theorem due to Goldsmith in conjunction with the so called Fuchs-Rabinovitch
relations for the automorphisms of the free product group on n elements.Comment: 13 pages, 1 figure, LaTex, minor page reformattin
An Analysis of the Representations of the Mapping Class Group of a Multi-Geon Three-Manifold
It is well known that the inequivalent unitary irreducible representations
(UIR's) of the mapping class group of a 3-manifold give rise to ``theta
sectors'' in theories of quantum gravity with fixed spatial topology. In this
paper, we study several families of UIR's of and attempt to understand the
physical implications of the resulting quantum sectors. The mapping class group
of a three-manifold which is the connected sum of with a finite number
of identical irreducible primes is a semi-direct product group. Following
Mackey's theory of induced representations, we provide an analysis of the
structure of the general finite dimensional UIR of such a group. In the picture
of quantized primes as particles (topological geons), this general
group-theoretic analysis enables one to draw several interesting qualitative
conclusions about the geons' behavior in different quantum sectors, without
requiring an explicit knowledge of the UIR's corresponding to the individual
primes.Comment: 52 pages, harvmac, 2 postscript figures, epsf required. Added an
appendix proving the semi-direct product structure of the MCG, corrected an
error in the characterization of the slide subgroup, reworded extensively.
All our analysis and conclusions remain as befor
The Fuzzy Supersphere
We introduce the fuzzy supersphere as sequence of finite-dimensional,
noncommutative -graded algebras tending in a suitable limit to a dense
subalgebra of the -graded algebra of -functions on
the -dimensional supersphere. Noncommutative analogues of the body map
(to the (fuzzy) sphere) and the super-deRham complex are introduced. In
particular we reproduce the equality of the super-deRham cohomology of the
supersphere and the ordinary deRham cohomology of its body on the "fuzzy
level".Comment: 33 pages, LaTeX, some typos correcte
- …
