1,643 research outputs found
Beam-size effect and particle losses at Super factory (Italy)
In the colliders, the macroscopically large impact parameters give a
substantial contribution to the standard cross section of the process. These impact parameters may be much larger than the
transverse sizes of the colliding bunches. It means that the standard cross
section of this process has to be substantially modified. In the present paper
such a beam-size effect is calculated for bremsstrahlung at Super factory
developed in Italy. We find out that this effect reduces beam losses due to
bremsstrahlung by about 40%.Comment: 11 pages, 4 figure
Finite element analysis of magnetic circuits composed of axisymmetric and rectangular regions
A new approximate method is developed for calculating three-dimensional magnetic fields in magnetic circuits composed of connected axisymmetric and rectangular regions. Using this new method, fairly accurate solutions can be obtained when the leakage flux from the magnetic circuit is small. In this paper, the new method is explained and then the usefulness of the technique is clarified by comparing calculated and measured flux densities.</p
Design Problems of Cryogenic Pressure Swing Adsorption System for Hydrogen Isotope Separation in Fusion Fuel Cycle
Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum
We present evidence showing how antiprotonic hydrogen, the quasistable
antiproton-proton (pbar-p) bound system, has been synthesized following the
interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested
Penning trap environment. From a careful analysis of the spatial distributions
of antiproton annihilation events, evidence is presented for antiprotonic
hydrogen production with sub-eV kinetic energies in states around n=70, and
with low angular momenta. The slow antiprotonic hydrogen may be studied using
laser spectroscopic techniques.Comment: 5 pages with 4 figures. Published as Phys. Rev. Letters 97, 153401
(2006), in slightly different for
Three Dimensional Annihilation Imaging of Antiprotons in a Penning Trap
We demonstrate three-dimensional annihilation imaging of antiprotons trapped
in a Penning trap. Exploiting unusual feature of antiparticles, we investigate
a previously unexplored regime in particle transport; the proximity of the trap
wall. Particle loss on the wall, the final step of radial transport, is
observed to be highly non-uniform, both radially and azimuthally. These
observations have considerable implications for the production and detection of
antihydrogen atoms.Comment: Invited Talk at NNP03, Workshop on Non-Neutral Plasmas, 200
Detection of antihydrogen annihilations with a Si-micro-strip and pure CsI detector
In 2002, the ATHENA collaboration reported the creation and detection of cold
(~15 K) antihydrogen atoms [1]. The observation was based on the complete
reconstruction of antihydrogen annihilations, simultaneous and spatially
correlated annihilations of an antiproton and a positron. Annihilation
byproducts are measured with a cylindrically symmetric detector system
consisting of two layers of double sided Si-micro-strip modules that are
surrounded by 16 rows of 12 pure CsI crystals (13 x 17.5 x 17 mm^3). This paper
gives a brief overview of the experiment, the detector system, and event
reconstruction.
Reference 1. M. Amoretti et al., Nature 419, 456 (2002).Comment: 7 pages, 5 figures; Proceedings for the 8th ICATPP Conference on
Astroparticle, Particle, Space Physics, Detectors and Medical Physics
Applications (Como, Italy October 2003) to be published by World Scientific
(style file included
- …
