3,057 research outputs found
Coherent analysis of quantum optical sideband modes
We demonstrate a device that allows for the coherent analysis of a pair of
optical frequency sidebands in an arbitrary basis. We show that our device is
quantum noise limited and hence applications for this scheme may be found in
discrete and continuous variable optical quantum information experiments.Comment: 3 pages, 3 figures, submitted to Optics Letter
Multiplexed communication over a high-speed quantum channel
In quantum information systems it is of particular interest to consider the
best way in which to use the non-classical resources consumed by that system.
Quantum communication protocols are integral to quantum information systems and
are amongst the most promising near-term applications of quantum information
science. Here we show that a multiplexed, digital quantum communications system
supported by comb of vacuum squeezing has a greater channel capacity per photon
than a source of broadband squeezing with the same analogue bandwidth. We
report on the time-resolved, simultaneous observation of the first dozen teeth
in a 2.4 GHz comb of vacuum squeezing produced by a sub-threshold OPO, as
required for such a quantum communications channel. We also demonstrate
multiplexed communication on that channel
An integrated study of earth resources in the State of California based on ERTS-1 and supporting aircraft data
There are no author-identified significant results in this report
Demonstration of the spatial separation of the entangled quantum side-bands of an optical field
Quantum optics experiments on "bright" beams typically probe correlations
between side-band modes. However the extra degree of freedom represented by
this dual mode picture is generally ignored. We demonstrate the experimental
operation of a device which can be used to separate the quantum side-bands of
an optical field. We use this device to explicitly demonstrate the quantum
entanglement between the side-bands of a squeezed beam
Use of ERTS-1 data in identification, classification, and mapping of salt-affected soils in California
There are no author-identified significant results in this report
Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
Collisionless shocks can be produced as a result of strong magnetic fields in
a plasma flow, and therefore are common in many astrophysical systems. The
Weibel instability is one candidate mechanism for the generation of
sufficiently strong fields to create a collisionless shock. Despite their
crucial role in astrophysical systems, observation of the magnetic fields
produced by Weibel instabilities in experiments has been challenging. Using a
proton probe to directly image electromagnetic fields, we present evidence of
Weibel-generated magnetic fields that grow in opposing, initially unmagnetized
plasma flows from laser-driven laboratory experiments. Three-dimensional
particle-in-cell simulations reveal that the instability efficiently extracts
energy from the plasma flows, and that the self-generated magnetic energy
reaches a few percent of the total energy in the system. This result
demonstrates an experimental platform suitable for the investigation of a wide
range of astrophysical phenomena, including collisionless shock formation in
supernova remnants, large-scale magnetic field amplification, and the radiation
signature from gamma-ray bursts
Photostatistics Reconstruction via Loop Detector Signatures
Photon-number resolving detectors are a fundamental building-block of optical
quantum information processing protocols. A loop detector, combined with
appropriate statistical processing, can be used to convert a binary on/off
photon counter into a photon-number-resolving detector. Here we describe the
idea of a signature of photon-counts, which may be used to more robustly
reconstruct the photon number distribution of a quantum state. The methodology
is applied experimentally in a 9-port loop detector operating at a
telecommunications wavelength and compared directly to the approach whereby
only the number of photon-counts is used to reconstruct the input distribution.
The signature approach is shown to be more robust against calibration errors,
exhibit reduced statistical uncertainty, and reduced reliance on a-priori
assumptions about the input state.Comment: 13 pages, 12 figure
Social cohesion as a real-life phenomenon: assessing the explanatory power of the universalist and particularist perspectives
Unconditional Continuous Variable Dense Coding
We investigate the conditions under which unconditional dense coding can be
achieved using continuous variable entanglement. We consider the effect of
entanglement impurity and detector efficiency and discuss experimental
verification. We conclude that the requirements for a strong demonstration are
not as stringent as previously thought and are within the reach of present
technology
- …
