7,330 research outputs found
the role of shock waves in modulation of galactic cosmic rays
The understanding of modulation of the galactic cosmic rays has considerably progressed by the exploration by space probes of major heliospheric structures, such as the Corotating Interaction Regions, the neutral sheet, and the compression regions of intense heliospheric magnetic fields. Also relevant in this context were the detections in the outer heliosphere of long lasting Forbush type decreases of cosmic ray intensity. The results of recent theoretical studies on the changes in intensity and energy, at different location from the Sun, induced by the passage of shocks across the heliosphere are presented. In this version of the research, the simplest cases of modulation of uGV and 2GV particles by single or several shocks during periods of positive and negative solar field polarity are reviewed. The results of the theoretical aspects of the search is reported. The comparison of the theoretical predictions with space probe data allows conclusions to be drawn on the role of shocks on the modulation on both the 11 and 22 year galactic cosmic ray cycles in the outer heliosphere and on the plausibility of the models and parameters used
Study of winglets applied to biplanes
The possibility of improving the aerodynamic characteristics of a biplane configuration by adding winglets is examined both theoretically and experimentally. Theoretical calculations show good agreement with experiment in predicting inviscid drag due to lift. Theoretical and experimental results indicate that the addition of winglets to an optimized biplane configuration can increase the ideal efficiency factor by up to 13 percent, as well as increasing the lift curve slope and maximum lift coefficient
Diagnosis of venous incompetence inerectile dysfunction
In 26 of 214 patients with erectile dysfunction and proved venous incompetence by cavernosography, an additional bidirectional Doppler ultrasound was performed also to demonstrate venous outflow disturbances. All except one leakage in the superficial and deep dorsal veins could be demonstrated as well as 4 of 6 cavernosum-glandular shunts. Bidirectional Doppler ultrasound visualized a continuous retrograde blood flow from the sulcus coronarius to the root of the penis in superficial and deep dorsal penile veins as well as in ectopic penile veins, an orthograde blood flow in the sulcus coronarius in cavernosum-glandular shunt
Quantum network coding for quantum repeaters
This paper considers quantum network coding, which is a recent technique that
enables quantum information to be sent on complex networks at higher rates than
by using straightforward routing strategies. Kobayashi et al. have recently
showed the potential of this technique by demonstrating how any classical
network coding protocol gives rise to a quantum network coding protocol. They
nevertheless primarily focused on an abstract model, in which quantum resource
such as quantum registers can be freely introduced at each node. In this work,
we present a protocol for quantum network coding under weaker (and more
practical) assumptions: our new protocol works even for quantum networks where
adjacent nodes initially share one EPR-pair but cannot add any quantum
registers or send any quantum information. A typically example of networks
satisfying this assumption is {\emph{quantum repeater networks}}, which are
promising candidates for the implementation of large scale quantum networks.
Our results thus show, for the first time, that quantum network coding
techniques can increase the transmission rate in such quantum networks as well.Comment: 9 pages, 11figure
Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus
The order Picornavirales includes several plant viruses that are currently classified into the families Comoviridae (genera Comovirus, Fabavirus and Nepovirus) and Sequiviridae (genera Sequivirus and Waikavirus) and into the unassigned genera Cheravirus and Sadwavirus. These viruses share properties in common with other picornavirales (particle structure, positive-strand RNA genome with a polyprotein expression strategy, a common replication block including type III helicase, a 3C-like cysteine proteinase and type I RNA-dependent RNA polymerase). However, they also share unique properties that distinguish them from other picornavirales. They infect plants and use specialized proteins or protein domains to move through their host. In phylogenetic analysis based on their replication proteins, these viruses form a separate distinct lineage within the picornavirales branch. To recognize these common properties at the taxonomic level, we propose to create a new family termed “Secoviridae” to include the genera Comovirus, Fabavirus, Nepovirus, Cheravirus, Sadwavirus, Sequivirus and Waikavirus. Two newly discovered plant viruses share common properties with members of the proposed family Secoviridae but have distinct specific genomic organizations. In phylogenetic reconstructions, they form a separate sub-branch within the Secoviridae lineage. We propose to create a new genus termed Torradovirus (type species, Tomato torrado virus) and to assign this genus to the proposed family Secoviridae
Optical Stark Effect and Dressed Excitonic States in a Mn-doped Quantum Dot
We report on the observation of spin dependent optically dressed states and
optical Stark effect on an individual Mn spin in a semiconductor quantum dot.
The vacuum-to-exciton or the exciton-to-biexciton transitions in a Mn-doped
quantum dot are optically dressed by a strong laser field and the resulting
spectral signature is measured in photoluminescence. We demonstrate that the
energy of any spin state of a Mn atom can be independently tuned using the
optical Stark effect induced by a control laser. High resolution spectroscopy
reveals a power, polarization and detuning dependent Autler-Townes splitting of
each optical transition of the Mn-doped quantum dot. This experiment
demonstrates a complete optical resonant control of the exciton-Mn system
Relativistic corrections to the Pionium Lifetime
Next to leading order contributions to the pionium lifetime are considered
within non-relativistic effective field theory. A more precise determination of
the coupling constants is then needed in order to be consistent with the
relativistic pion-pion scattering amplitude which can be obtained from chiral
perturbation theory. The relativistic correction is found to be 4.1% and
corresponds simply to a more accurate value for the non-relativistic decay
momentum.Comment: 5 pages, Latex. Includes corrections based on a more precise matching
to the pion-pion scattering amplitude from chiral perturbation theor
Work-rate of substitutes in elite soccer: A preliminary study
The aim of this study was to investigate the work-rate of substitutes in professional soccer. A computerised player tracking system was used to assess the work-rates of second-half substitutes (11 midfielders and 14 forwards) in a French Ligue 1 club. Total distance, distance covered in five categories of movement intensity and recovery time between high-intensity efforts were evaluated. First- and second-half work-rates of the replaced players were compared. The performance of substitutes was compared to that of the players they replaced, to team-mates in the same position who remained on the pitch after the substitution and in relation to their habitual performances when starting games. No differences in work-rate between first- and second-halves were observed in all players who were substituted. In the second-half, a non-significant trend was observed in midfield substitutes who covered greater distances than the player they replaced whereas no differences were observed in forwards. Midfield substitutes covered a greater overall distance and distance at high-intensities (p<0.01) and had a lower recovery time between high-intensity efforts (p<0.01) compared to other midfield team-mates who remained on the pitch. Forwards covered less distance (p<0.01) in their first 10-minutes as a substitute compared to their habitual work-rate profile in the opening 10-minutes when starting matches while this finding was not observed in midfielders. These findings suggest that compared to midfield substitutes, forward substitutes did not utilise their full physical potential. Further investigation is warranted into the reasons behind this finding in order to optimise the work-rate contributions of forward substitutes
Electron-nuclei spin dynamics in II-VI semiconductor quantum dots
We report on the dynamics of optically induced nuclear spin polarization in
individual CdTe/ZnTe quantum dots loaded with one electron by modulation
doping. The fine structure of the hot trion (charged exciton with an
electron in the -shell) is identified in photoluminescence excitation
spectra. A negative polarisation rate of the photoluminescence, optical pumping
of the resident electron and the built-up of dynamic nuclear spin polarisation
(DNSP) are observed in time-resolved optical pumping experiments when the
quantum dot is excited at higher energy than the hot trion triplet state. The
time and magnetic field dependence of the polarisation rate of the
emission allows to probe the dynamics of formation of the DNSP in the optical
pumping regime. We demonstrate using time-resolved measurements that the
creation of a DNSP at B=0T efficiently prevents longitudinal spin relaxation of
the electron caused by fluctuations of the nuclear spin bath. The DNSP is built
in the microsecond range at high excitation intensity. A relaxation time of the
DNSP in about 10 microseconds is observed at and significantly increases
under a magnetic field of a few milli-Tesla. We discuss mechanisms responsible
for the fast initialisation and relaxation of the diluted nuclear spins in this
system
- …
