725 research outputs found
Recommended from our members
ARMC 5 Variants and Risk of Hypertension in Blacks: MH- GRID Study.
Background We recently found that ARMC 5 variants may be associated with primary aldosteronism in blacks. We investigated a cohort from the MH - GRID (Minority Health Genomics and Translational Research Bio-Repository Database) and tested the association between ARMC 5 variants and blood pressure in black s. Methods and Results Whole exome sequencing data of 1377 black s were analyzed. Target single-variant and gene-based association analyses of hypertension were performed for ARMC 5, and replicated in a subset of 3015 individuals of African descent from the UK Biobank cohort. Sixteen rare variants were significantly associated with hypertension ( P=0.0402) in the gene-based (optimized sequenced kernel association test) analysis; the 16 and one other, rs116201073, together, showed a strong association ( P=0.0003) with blood pressure in this data set. The presence of the rs116201073 variant was associated with lower blood pressure. We then used human embryonic kidney 293 and adrenocortical H295R cells transfected with an ARMC 5 construct containing rs116201073 (c.*920T>C). The latter was common in both the discovery ( MH - GRID ) and replication ( UK Biobank) data and reached statistical significance ( P=0.044 [odds ratio, 0.7] and P=0.007 [odds ratio, 0.76], respectively). The allele carrying rs116201073 increased levels of ARMC5 mRNA , consistent with its protective effect in the epidemiological data. Conclusions ARMC 5 shows an association with hypertension in black s when rare variants within the gene are considered. We also identified a protective variant of the ARMC 5 gene with an effect on ARMC 5 expression confirmed in vitro. These results extend our previous report of ARMC 5's possible involvement in the determination of blood pressure in blacks
Recommended from our members
Event attribution science in adaptation decision-making: the context of extreme rainfall in urban Senegal
Event attribution assesses the effect of climate change on individual extreme events. While scientists have suggested that results could be relevant for climate adaptation policy, this has had little empirical investigation, particularly in developing regions. Taking the case of Senegal, the national adaptation policy context regarding extreme precipitation and flooding in urban areas, and the scientific information needed to support this policy, is investigated using key informant interviews, a workshop and document analysis. Flooding in Senegal was found to be viewed primarily as an urban planning concern rather than a climate change issue, with actions to address the impacts focussing on current vulnerabilities of urban communities without considering changing climate risks. While stakeholders thought event attribution might be useful to inform about climate change impacts and future risks of extreme events, it is unclear whether there would be opportunity for this at present, due to the limited role climate information has in adaptation decision-making. While addressing vulnerability to extremes is necessary whether or not the risk is climate change-related, if long-term planning is to be resilient then knowledge about future changes in risks of extremes will need to be considered, even if individual events are not attributed to climate change
Investigation into the cause of spontaneous emulsification of a free steel droplet : validation of the chemical exchange pathway
Small Fe-based droplets have been heated to a molten phase suspended within a slag medium to replicate a partial environment within the basic oxygen furnace (BOF). The confocal scanning laser microscope (CSLM) has been used as a heating platform to interrogate the effect of impurities and their transfer across the metal/slag interface, on the emulsification of the droplet into the slag medium. The samples were then examined through X-ray computer tomography (XCT) giving the mapping of emulsion dispersion in 3D space, calculating the changing of interfacial area between the two materials, and changes of material volume due to material transfer between metal and slag. Null experiments to rule out thermal gradients being the cause of emulsification have been conducted as well as replication of the previously reported study by Assis et al.[1] which has given insights into the mechanism of emulsification. Finally chemical analysis was conducted to discover the transfer of oxygen to be the cause of emulsification, leading to a new study of a system with undergoing oxygen equilibration
ATP DOMINO. Atelier d'échanges entre le Sénégal et la Réunion du 19 au 26 août 2006, Hôtel Alamanda, Saint-Gilles, La Réunion : Rapport d'atelier
Dynamic model of basic oxygen steelmaking process based on multi-zone reaction kinetics : model derivation and validation
A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the BOF operation. The three reaction zones, (i) jet impact zone (ii) slag-bulk metal zone (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process
ANATOMY ACADEMY: THE IMPACT ON NURSING STUDENTS
1. Evaluation of how well the academic objectives of the proposal were met and description of the results/findings of the project.
We studied the impact on student nurse mentors who volunteered to teach an anatomy based childhood obesity prevention program in area elementary schools. Student nurse mentors’ self-perceived communication, teaching and collaboration skills were measured at pre-and post-participation in the AA program. From the quantitative data collected, descriptive and inferential statistics were calculated using SPSS versions 21 (IBM Corp, 2012). Data were reviewed for outliers and data entry errors using descriptive statistics, histograms, and box plots. None were identified. Means and standard deviations for individual items and the instrument overall at pre-test and post-test are reported in Table 1. Internal consistency was evaluated using Cronbach’s (DeVellis, 2003) alpha. Pre-test alpha was .84 and post-test alpha was .74 both falling within the range that is considered generally acceptable (DeVellis, 2003)
Synthesis and X-ray structure of the dysprosium(III) complex derived from the ligand 5-chloro-1,3-diformyl-2-hydroxybenzene-bis-(2-hydroxybenzoylhydrazone) [Dy2(C22H16ClN4O5)3]
The title compound [Dy2(C22H16ClN4O5)3](SCN)3(H2O)(CH3OH) has been synthesized and its crystal structure determined by single X-ray diffraction at room temperature. The two nine coordinated Dy(III) are bound to three macromolecules ligand through the phenolic oxygens of the p-chlorophenol moieties, the nitrogen atoms and the carbonyl functions of the hydrazonic moieties. The phenolic oxygen atoms of the 2-hydroxybenzoyl groups are not bonded to the metal ions. In the bases of the coordination polyhedra the six Dy-N bonds are in the range 2.563(13)-2.656(13) Å and the twelve Dy-O bonds are in the range 2.281(10)-2.406(10) Å. KEY WORDS: Dysprosium(III) complex, 5-Chloro-1,3-diformyl-2-hydroxybenzene-bis-(2-hydroxybenzoylhydrazone), Crystal structure Bull. Chem. Soc. Ethiop. 2003, 17(2), 167-172
- …
