1,151 research outputs found

    Isolated Photons in Deep Inelastic Scattering

    Full text link
    Photon radiation at large transverse momenta at colliders is a detailed probe of hard interaction dynamics. The isolated photon production cross section in deep inelastic scattering was measured recently by the ZEUS experiment, and found to be considerably larger than theoretical predictions obtained with widely used event generators. To investigate this discrepancy, we perform a dedicated parton-level calculation of this observable, including contributions from fragmentation and large-angle radiation. Our results are in good agreement with all aspects of the experimental measurement.Comment: 4 pages, 3 figure

    Computational algebraic methods in efficient estimation

    Full text link
    A strong link between information geometry and algebraic statistics is made by investigating statistical manifolds which are algebraic varieties. In particular it it shown how first and second order efficient estimators can be constructed, such as bias corrected Maximum Likelihood and more general estimators, and for which the estimating equations are purely algebraic. In addition it is shown how Gr\"obner basis technology, which is at the heart of algebraic statistics, can be used to reduce the degrees of the terms in the estimating equations. This points the way to the feasible use, to find the estimators, of special methods for solving polynomial equations, such as homotopy continuation methods. Simple examples are given showing both equations and computations. *** The proof of Theorem 2 was corrected by the latest version. Some minor errors were also corrected.Comment: 21 pages, 5 figure

    The fully differential hadronic production of a Higgs boson via bottom quark fusion at NNLO

    Full text link
    The fully differential computation of the hadronic production cross section of a Higgs boson via bottom quarks is presented at NNLO in QCD. Several differential distributions with their corresponding scale uncertainties are presented for the 8 TeV LHC. This is the first application of the method of non-linear mappings for NNLO differential calculations at hadron colliders.Comment: 27 pages, 13 figures, 1 lego plo

    Hermes and the spin of the proton

    Get PDF
    HERMES is a second generation experiment to study the spin structure of the nucleon, in which measurements of the spin dependent properties of semi-inclusive deep-inelastic lepton scattering are emphasized. Data have been accumulated for semi-inclusive pion, kaon, and proton double-spin asymmetries, as well as for high-p_T hadron pairs, and single-spin azimuthal asymmetries for pion electroproduction and deep virtual Compton scattering. These results provide information on the flavor decomposition of the polarized quark distributions in the nucleon and a first glimpse of the gluon polarization, while the observation of the azimuthal asymmetries show promise for probing the tensor spin of the nucleon and isolating the total angular momentum carried by the quarks.Comment: LaTeX, 21 page

    Measurement of the strong coupling alpha_S from the three-jet rate in e+e- - annihilation using JADE data

    Get PDF
    We present a measurement of the strong coupling alpha_S using the three-jet rate measured with the Durham algorithm in e+e- -annihilation using data of the JADE experiment at centre-of-mass energies between 14 and 44 GeV. Recent theoretical improvements provide predictions of the three-jet rate in e+e- -annihilation at next-to-next-to-leading order. In this paper a measurement of the three-jet rate is used to determine the strong coupling alpha_s from a comparison to next-to-next-to-leading order predictions matched with next-to-leading logarithmic approximations and yields a value for the strong coupling alpha_S(MZ) = 0.1199+- 0.0010 (stat.) +- 0.0021 (exp.) +- 0.0054 (had.) +- 0.0007 (theo.) consistent with the world average.Comment: 27 pages, 8 figure

    Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes

    Full text link
    We show how the Hopf algebra structure of multiple polylogarithms can be used to simplify complicated expressions for multi-loop amplitudes in perturbative quantum field theory and we argue that, unlike the recently popularized symbol-based approach, the coproduct incorporates information about the zeta values. We illustrate our approach by rewriting the two-loop helicity amplitudes for a Higgs boson plus three gluons in a simplified and compact form involving only classical polylogarithms.Comment: 46 page
    corecore