1,532 research outputs found

    Stability of Negative Image Equilibria in Spike-Timing Dependent Plasticity

    Full text link
    We investigate the stability of negative image equilibria in mean synaptic weight dynamics governed by spike-timing dependent plasticity (STDP). The neural architecture of the model is based on the electrosensory lateral line lobe (ELL) of mormyrid electric fish, which forms a negative image of the reafferent signal from the fish's own electric discharge to optimize detection of external electric fields. We derive a necessary and sufficient condition for stability, for arbitrary postsynaptic potential functions and arbitrary learning rules. We then apply the general result to several examples of biological interest.Comment: 13 pages, revtex4; uses packages: graphicx, subfigure; 9 figures, 16 subfigure

    Extracting non-linear integrate-and-fire models from experimental data using dynamic I–V curves

    Get PDF
    The dynamic I–V curve method was recently introduced for the efficient experimental generation of reduced neuron models. The method extracts the response properties of a neuron while it is subject to a naturalistic stimulus that mimics in vivo-like fluctuating synaptic drive. The resulting history-dependent, transmembrane current is then projected onto a one-dimensional current–voltage relation that provides the basis for a tractable non-linear integrate-and-fire model. An attractive feature of the method is that it can be used in spike-triggered mode to quantify the distinct patterns of post-spike refractoriness seen in different classes of cortical neuron. The method is first illustrated using a conductance-based model and is then applied experimentally to generate reduced models of cortical layer-5 pyramidal cells and interneurons, in injected-current and injected- conductance protocols. The resulting low-dimensional neuron models—of the refractory exponential integrate-and-fire type—provide highly accurate predictions for spike-times. The method therefore provides a useful tool for the construction of tractable models and rapid experimental classification of cortical neurons

    Desynchronization in diluted neural networks

    Full text link
    The dynamical behaviour of a weakly diluted fully-inhibitory network of pulse-coupled spiking neurons is investigated. Upon increasing the coupling strength, a transition from regular to stochastic-like regime is observed. In the weak-coupling phase, a periodic dynamics is rapidly approached, with all neurons firing with the same rate and mutually phase-locked. The strong-coupling phase is characterized by an irregular pattern, even though the maximum Lyapunov exponent is negative. The paradox is solved by drawing an analogy with the phenomenon of ``stable chaos'', i.e. by observing that the stochastic-like behaviour is "limited" to a an exponentially long (with the system size) transient. Remarkably, the transient dynamics turns out to be stationary.Comment: 11 pages, 13 figures, submitted to Phys. Rev.

    Generalized Rate-Code Model for Neuron Ensembles with Finite Populations

    Full text link
    We have proposed a generalized Langevin-type rate-code model subjected to multiplicative noise, in order to study stationary and dynamical properties of an ensemble containing {\it finite} NN neurons. Calculations using the Fokker-Planck equation (FPE) have shown that owing to the multiplicative noise, our rate model yields various kinds of stationary non-Gaussian distributions such as gamma, inverse-Gaussian-like and log-normal-like distributions, which have been experimentally observed. Dynamical properties of the rate model have been studied with the use of the augmented moment method (AMM), which was previously proposed by the author with a macroscopic point of view for finite-unit stochastic systems. In the AMM, original NN-dimensional stochastic differential equations (DEs) are transformed into three-dimensional deterministic DEs for means and fluctuations of local and global variables. Dynamical responses of the neuron ensemble to pulse and sinusoidal inputs calculated by the AMM are in good agreement with those obtained by direct simulation. The synchronization in the neuronal ensemble is discussed. Variabilities of the firing rate and of the interspike interval (ISI) are shown to increase with increasing the magnitude of multiplicative noise, which may be a conceivable origin of the observed large variability in cortical neurons.Comment: 19 pages, 9 figures, accepted in Phys. Rev. E after minor modification

    Supervised Learning in Multilayer Spiking Neural Networks

    Get PDF
    The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.Comment: 38 pages, 4 figure

    Crossover between Levy and Gaussian regimes in first passage processes

    Get PDF
    We propose a new approach to the problem of the first passage time. Our method is applicable not only to the Wiener process but also to the non--Gaussian Leˊ\acute{\rm e}vy flights or to more complicated stochastic processes whose distributions are stable. To show the usefulness of the method, we particularly focus on the first passage time problems in the truncated Leˊ\acute{\rm e}vy flights (the so-called KoBoL processes), in which the arbitrarily large tail of the Leˊ\acute{\rm e}vy distribution is cut off. We find that the asymptotic scaling law of the first passage time tt distribution changes from t(α+1)/αt^{-(\alpha +1)/\alpha}-law (non-Gaussian Leˊ\acute{\rm e}vy regime) to t3/2t^{-3/2}-law (Gaussian regime) at the crossover point. This result means that an ultra-slow convergence from the non-Gaussian Leˊ\acute{\rm e}vy regime to the Gaussian regime is observed not only in the distribution of the real time step for the truncated Leˊ\acute{\rm e}vy flight but also in the first passage time distribution of the flight. The nature of the crossover in the scaling laws and the scaling relation on the crossover point with respect to the effective cut-off length of the Leˊ\acute{\rm e}vy distribution are discussed.Comment: 18pages, 7figures, using revtex4, to appear in Phys.Rev.

    The spike train statistics for consonant and dissonant musical accords

    Full text link
    The simple system composed of three neural-like noisy elements is considered. Two of them (sensory neurons or sensors) are stimulated by noise and periodic signals with different ratio of frequencies, and the third one (interneuron) receives the output of these two sensors and noise. We propose the analytical approach to analysis of Interspike Intervals (ISI) statistics of the spike train generated by the interneuron. The ISI distributions of the sensory neurons are considered to be known. The frequencies of the input sinusoidal signals are in ratios, which are usual for music. We show that in the case of small integer ratios (musical consonance) the input pair of sinusoids results in the ISI distribution appropriate for more regular output spike train than in a case of large integer ratios (musical dissonance) of input frequencies. These effects are explained from the viewpoint of the proposed theory.Comment: 22 pages, 6 figure

    Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons

    Full text link
    We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which multiple periodic spatio-temporal patterns of spike timing are memorized as limit-cycle-type attractors. In encoding the spatio-temporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asymmetric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase transition due to the loss of the stability of periodic solution is observed when we assume fast alpha-function for direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ Floquet theory in which the stability problem of the infinite number of spiking neurons interacting with alpha-function is reduced into the eigenvalue problem with the finite size of matrix. Numerical integration of the single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point of the phase transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.

    Triggering up states in all-to-all coupled neurons

    Full text link
    Slow-wave sleep in mammalians is characterized by a change of large-scale cortical activity currently paraphrased as cortical Up/Down states. A recent experiment demonstrated a bistable collective behaviour in ferret slices, with the remarkable property that the Up states can be switched on and off with pulses, or excitations, of same polarity; whereby the effect of the second pulse significantly depends on the time interval between the pulses. Here we present a simple time discrete model of a neural network that exhibits this type of behaviour, as well as quantitatively reproduces the time-dependence found in the experiments.Comment: epl Europhysics Letters, accepted (2010
    corecore