536 research outputs found
TRAPHIC - Radiative Transfer for Smoothed Particle Hydrodynamics Simulations
We present TRAPHIC, a novel radiative transfer scheme for Smoothed Particle
Hydrodynamics (SPH) simulations. TRAPHIC is designed for use in simulations
exhibiting a wide dynamic range in physical length scales and containing a
large number of light sources. It is adaptive both in space and in angle and
can be employed for application on distributed memory machines. The commonly
encountered computationally expensive scaling with the number of light sources
in the simulation is avoided by introducing a source merging procedure. The
(time-dependent) radiative transfer equation is solved by tracing individual
photon packets in an explicitly photon-conserving manner directly on the
unstructured grid traced out by the set of SPH particles. To accomplish
directed transport of radiation despite the irregular spatial distribution of
the SPH particles, photons are guided inside cones. We present and test a
parallel numerical implementation of TRAPHIC in the SPH code GADGET-2,
specified for the transport of mono-chromatic hydrogen-ionizing radiation. The
results of the tests are in excellent agreement with both analytic solutions
and results obtained with other state-of-the-art radiative transfer codes.Comment: 31 pages, 20 figures. Accepted for publication in MNRAS. Revised
version includes many clarifications and a new time-dependent radiative
transfer calculation (fig. 19
Solving One Dimensional Scalar Conservation Laws by Particle Management
We present a meshfree numerical solver for scalar conservation laws in one
space dimension. Points representing the solution are moved according to their
characteristic velocities. Particle interaction is resolved by purely local
particle management. Since no global remeshing is required, shocks stay sharp
and propagate at the correct speed, while rarefaction waves are created where
appropriate. The method is TVD, entropy decreasing, exactly conservative, and
has no numerical dissipation. Difficulties involving transonic points do not
occur, however inflection points of the flux function pose a slight challenge,
which can be overcome by a special treatment. Away from shocks the method is
second order accurate, while shocks are resolved with first order accuracy. A
postprocessing step can recover the second order accuracy. The method is
compared to CLAWPACK in test cases and is found to yield an increase in
accuracy for comparable resolutions.Comment: 15 pages, 6 figures. Submitted to proceedings of the Fourth
International Workshop Meshfree Methods for Partial Differential Equation
An implicit method for radiative transfer with the diffusion approximation in SPH
An implicit method for radiative transfer in SPH is described. The diffusion
approximation is used, and the hydrodynamic calculations are performed by a
fully three--dimensional SPH code. Instead of the energy equation of state for
an ideal gas, various energy states and the dissociation of hydrogen molecules
are considered in the energy calculation for a more realistic temperature and
pressure determination. In order to test the implicit code, we have performed
non--isothermal collapse simulations of a centrally condensed cloud, and have
compared our results with those of finite difference calculations performed by
MB93. The results produced by the two completely different numerical methods
agree well with each other.Comment: 25 pages, 9 figure
Simulation and experimental study of rheological properties of CeO2 – water nanofluid
Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Metal oxide nanoparticles offer great merits over controlling rheological, thermal, chemical and physical properties of solutions. The effectiveness of a nanoparticle to modify the properties of a fluid depends on its diffusive properties with respect to the fluid. In this study, rheological properties of aqueous fluids (i.e. water) were enhanced with the addition of CeO2 nanoparticles. This study was characterized by the outcomes of simulation and experimental results of nanofluids. The movement of nanoparticles in the fluidic media was simulated by a large-scale molecular thermal dynamic program (i.e. LAMMPS). The COMPASS force field was employed with smoothed particle hydrodynamic potential (SPH) and discrete particle dynamics potential (DPD). However, this study develops the understanding of how the rheological properties are affected due to the addition of nanoparticles in a fluid and the way DPD and SPH can be used for accurately estimating the rheological properties with Brownian effect. The rheological results of the simulation were confirmed by the convergence of the stress autocorrelation function, whereas experimental properties were measured using a rheometer. These rheological values of simulation were obtained and agreed within 5 % of the experimental values; they were identified and treated with a number of iterations and experimental tests. The results of the experiment and simulation show that 10 % CeO2 nanoparticles dispersion in water has a viscosity of 2.0–3.3 mPasPeer reviewedFinal Published versio
The Structure of Isothermal, Self-gravitating Gas Spheres for Softened Gravity
A theory for the structure of isothermal, self-gravitating gas spheres in
pressure equilibrium in a softened gravitational field is developed. The one
parameter spline softening proposed by Hernquist & Katz (1989) is used. We show
that the addition of this extra scale parameter implies that the set of
equilibrium solutions constitute a one-parameter family, rather than the one
and only one isothermal sphere solution for Newtonian gravity. We demonstrate
the perhaps somewhat surprising result that for any finite choice of softening
length and temperature, it is possible to deposit an arbitrarily large mass of
gas in pressure equilibrium and with a non-singular density distribution inside
of r_0 for any r_0 > 0. The theoretical predictions of our models are compared
with the properties of the small, massive, quasi-isothermal gas clumps which
typically form in numerical Tree-SPH simulations of 'passive' galaxy formation
of Milky Way sized galaxies. We find reasonable agreement despite the neglect
of rotational support in the models. We comment on whether the hydrodynamical
resolution in our numerical simulation of galaxy formation is sufficient, and
finally we conclude that one should be cautious, when comparing results of
numerical simulations involving gravitational softening and hydrodynamical
smoothing, with reality.Comment: 22 pages Latex + 12 figure
The Evolution of the M-sigma Relation
(Abridged) We examine the evolution of the black hole mass - stellar velocity
dispersion (M-sigma) relation over cosmic time using simulations of galaxy
mergers that include feedback from supermassive black hole growth. We consider
mergers of galaxies varying the properties of the progenitors to match those
expected at redshifts z=0-6. We find that the slope of the resulting M-sigma
relation is the same at all redshifts considered. For the same feedback
efficiency that reproduces the observed amplitude of the M-sigma relation at
z=0, there is a weak redshift-dependence to the normalization that results from
an increasing velocity dispersion for a given galactic stellar mass. We develop
a formalism to connect redshift evolution in the M-sigma relation to the
scatter in the local relation at z=0. We show that the scatter in the local
relation places severe constraints on the redshift evolution of both the
normalization and slope of the M-sigma relation. Furthermore, we demonstrate
that cosmic downsizing introduces a black hole mass-dependent dispersion in the
M-sigma relation and that the skewness of the distribution about the locally
observed M-sigma relation is sensitive to redshift evolution in the
normalization and slope. In principle, these various diagnostics provide a
method for differentiating between theories for producing the M-sigma relation.
In agreement with existing constraints, our simulations imply that hierarchical
structure formation should produce the relation with small intrinsic scatter.Comment: 12 pages, 6 figures, version accepted by Ap
The Chemical Compositions of the Type II Cepheids -- The BL Her and W Vir Variables
Abundance analyses from high-resolution optical spectra are presented for 19
Type II Cepheids in the Galactic field. The sample includes both short-period
(BL Her) and long-period (W Vir) stars. This is the first extensive abundance
analysis of these variables. The C, N, and O abundances with similar spreads
for the BL Her and W Vir show evidence for an atmosphere contaminated with
-process and CN-cycling products. A notable anomaly of the BL Her
stars is an overabundance of Na by a factor of about five relative to their
presumed initial abundances. This overabundance is not seen in the W Vir stars.
The abundance anomalies running from mild to extreme in W Vir stars but not
seen in the BL Her stars are attributed to dust-gas separation that provides an
atmosphere deficient in elements of high condensation temperature, notably Al,
Ca, Sc, Ti, and -process elements. Such anomalies have previously been seen
among RV Tau stars which represent a long-period extension of the variability
enjoyed by the Type II Cepheids. Comments are offered on how the contrasting
abundance anomalies of BL Her and W Vir stars may be explained in terms of the
stars' evolution from the blue horizontal branch.Comment: 41 pages including 11 figures and 4 tables; Accepted for publication
in Ap
Cosmological Evolution of Supergiant Star-Forming Clouds
In an exploration of the birthplaces of globular clusters, we present a
careful examination of the formation of self-gravitating gas clouds within
assembling dark matter haloes in a hierarchical cosmological model. Our
high-resolution smoothed particle hydrodynamical simulations are designed to
determine whether or not hypothesized supergiant molecular clouds (SGMCs) form
and, if they do, to determine their physical properties and mass spectra. It
was suggested in earlier work that clouds with a median mass of several 10^8
M_sun are expected to assemble during the formation of a galaxy, and that
globular clusters form within these SGMCs. Our simulations show that clouds
with the predicted properties are indeed produced as smaller clouds collide and
agglomerate within the merging dark matter haloes of our cosmological model. We
find that the mass spectrum of these clouds obeys the same power-law form
observed for globular clusters, molecular clouds, and their internal clumps in
galaxies, and predicted for the supergiant clouds in which globular clusters
may form. We follow the evolution and physical properties of gas clouds within
small dark matter haloes up to z = 1, after which prolific star formation is
expected to occur. Finally, we discuss how our results may lead to more
physically motivated "rules" for star formation in cosmological simulations of
galaxy formation.Comment: Accepted to The Astrophysical Journal; 17 pages, 8 figure
The mass function
We present the mass functions for different mass estimators for a range of
cosmological models. We pay particular attention to how universal the mass
function is, and how it depends on the cosmology, halo identification and mass
estimator chosen. We investigate quantitatively how well we can relate observed
masses to theoretical mass functions.Comment: 14 pages, 12 figures, to appear in ApJ
The Self-Regulated Growth of Supermassive Black Holes
We present a series of simulations of the self--regulated growth of
supermassive black holes (SMBHs) in galaxies via three different fueling
mechanisms: major mergers, minor mergers, and disk instabilities. The SMBHs in
all three scenarios follow the same black hole fundamental plane (BHFP) and
correlation with bulge binding energy seen in simulations of major mergers, and
observed locally. Furthermore, provided that the total gas supply is
significantly larger than the mass of the SMBH, its limiting mass is not
influenced by the amount of gas available or the efficiency of black hole
growth. This supports the assertion that SMBHs accrete until they reach a
critical mass at which feedback is sufficient to unbind the gas locally,
terminating the inflow and stalling further growth. At the same time, while
minor and major mergers follow the same projected correlations (e.g., the
and Magorrian relations), SMBHs grown via disk instabilities do
not, owing to structural differences between the host bulges. This finding is
supported by recent observations of SMBHs in pseudobulges and bulges in barred
systems, as compared to those hosted by classical bulges. Taken together, this
provides support for the BHFP and binding energy correlations as being more
"fundamental" than other proposed correlations in that they reflect the
physical mechanism driving the co-evolution of SMBHs and spheroids.Comment: 15 pages, 16 figures, accepted for publication in Ap
- …
