13 research outputs found

    Comparison of sequence-capture and ddRAD approaches in resolving species and populations in hexacorallian anthozoans.

    Get PDF
    Genome-level sequencing is the next step in understanding species-level relationships within Anthozoa (soft corals, anemones, stony corals, and their kin) as morphological and PCR-directed (single-locus) sequencing methods often fall short of differentiating species. The sea anemone genus Metridium is a common northern temperate sea anemone whose species are difficult to differentiate using morphology alone. Here we use Metridium as a case study to confirm the low level of information available in six loci for species differentiation commonly sequenced for Actiniaria and explore and compare the efficacy of ddRAD and sequence-capture methods in species-level systematics and biogeographic studies. We produce phylogenetic trees from concatenated datasets and perform DAPC and STRUCTURE analyses using SNP data. The six conventional loci are not able to consistently differentiate species within Metridium. The sequence-capture dataset resulted in high support and resolution for both current species and relationships between geographic areas. The ddRAD datasets displayed ambiguity among species, and support between major geographic groupings was not as high as the sequence-capture datasets. The level of resolution and support resulting from the sequence-capture data, combined with the ability to add additional individuals and expand beyond the genus Metridium over time, emphasizes the utility of sequence-capture methods for both systematics and future biogeographic studies within anthozoans. We discuss the strengths and weaknesses of the genomic approaches in light of our findings and suggest potential implications for the biogeography of Metridium based on our sampling

    Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy

    No full text
    Adenosine is an inhibitor of neuronal activity in the brain. The local release of adenosine from grafted cells was evaluated as an ex vivo gene therapy approach to suppress synchronous discharges and epileptic seizures. Fibroblasts were engineered to release adenosine by inactivating the adenosine-metabolizing enzymes adenosine kinase and adenosine deaminase. After encapsulation into semipermeable polymers, the cells were grafted into the brain ventricles of electrically kindled rats, a model of partial epilepsy. Grafted rats provided a nearly complete protection from behavioral seizures and a near-complete suppression of afterdischarges in electroencephalogram recordings, whereas the full tonic–clonic convulsions in control rats remained unaltered. Thus, the local release of adenosine resulting in adenosine concentrations <25 nM at the site of action is sufficient to suppress seizure activity and, therefore, provides a potential therapeutic principle for the treatment of drug-resistant partial epilepsies

    Molecular Biology of HIV

    No full text

    Mediators of invasions in the sea: life history strategies and dispersal vectors facilitating global sea anemone introductions

    No full text
    corecore