271 research outputs found
A dynamic network approach for the study of human phenotypes
The use of networks to integrate different genetic, proteomic, and metabolic
datasets has been proposed as a viable path toward elucidating the origins of
specific diseases. Here we introduce a new phenotypic database summarizing
correlations obtained from the disease history of more than 30 million patients
in a Phenotypic Disease Network (PDN). We present evidence that the structure
of the PDN is relevant to the understanding of illness progression by showing
that (1) patients develop diseases close in the network to those they already
have; (2) the progression of disease along the links of the network is
different for patients of different genders and ethnicities; (3) patients
diagnosed with diseases which are more highly connected in the PDN tend to die
sooner than those affected by less connected diseases; and (4) diseases that
tend to be preceded by others in the PDN tend to be more connected than
diseases that precede other illnesses, and are associated with higher degrees
of mortality. Our findings show that disease progression can be represented and
studied using network methods, offering the potential to enhance our
understanding of the origin and evolution of human diseases. The dataset
introduced here, released concurrently with this publication, represents the
largest relational phenotypic resource publicly available to the research
community.Comment: 28 pages (double space), 6 figure
Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways
It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers
Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.
Essentially all biological processes depend on protein-protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner
Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism
Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases
HDNetDB: A Molecular Interaction Database for Network-Oriented Investigations into Huntington’s Disease
Huntington's disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Although HD is monogenic, its molecular manifestation appears highly complex and involves multiple cellular processes. The recent application of high throughput platforms such as microarrays and mass-spectrometry has indicated multiple pathogenic routes. The massive data generated by these techniques together with the complexity of the pathogenesis, however, pose considerable challenges to researchers. Network-based methods can provide valuable tools to consolidate newly generated data with existing knowledge, and to decipher the interwoven molecular mechanisms underlying HD. To facilitate research on HD in a network-oriented manner, we have developed HDNetDB, a database that integrates molecular interactions with many HD-relevant datasets. It allows users to obtain, visualize and prioritize molecular interaction networks using HD-relevant gene expression, phenotypic and other types of data obtained from human samples or model organisms. We illustrated several HDNetDB functionalities through a case study and identified proteins that constitute potential cross-talk between HD and the unfolded protein response (UPR). HDNetDB is publicly accessible at http://hdnetdb.sysbiolab.eu.CHDI Foundation [A-2666]; Portuguese Fundacao para a Ciencia e a Tecnologia [SFRH/BPD/70718/2010, SFRH/BPD/96890/2013, IF/00881/2013, UID/BIM/04773/2013 - CBMR, UID/Multi/04326/2013 - CCMAR]info:eu-repo/semantics/publishedVersio
p21Waf1 expression is regulated by nuclear intermediate filament vimentin in neuroblastoma
<p>Abstract</p> <p>Background</p> <p>Human neuroblastoma (NB) cell lines may present with either one of the so-called S-and N-subtypes. We have previously reported a strong correlation between protein expression levels of vimentin, an S-subtype marker, and the p21<sup>Waf1 </sup>cyclin-dependent kinase inhibitor. We here investigated whether this correlation extend to the mRNA level in NB cell lines as well as in patients' tumors. We also further explored the relationship between expression of vimentin and p21, by asking whether vimentin could regulate p21 expression.</p> <p>Methods</p> <p>Vimentin and p21 mRNA levels in NB cell lines as well as in patients' tumors (<it>n </it>= 77) were quantified using Q-PCR. Q-PCR data obtained from tumors of high risk NB patients (<it>n </it>= 40) were analyzed in relation with the overall survival using the Log-rank Kaplan-Meier estimation. siRNA-mediated depletion or overexpression of vimentin in highly or low expressing vimentin cell lines, respectively, followed by protein expression and promoter activation assays were used to assess the role of vimentin in modulating p21 expression.</p> <p>Results</p> <p>We extend the significant correlation between vimentin and p21 expression to the mRNA level in NB cell lines as well as in patients' tumors. Overall survival analysis from Q-PCR data obtained from tumors of high risk patients suggests that lower levels of p21 expression could be associated with a poorer outcome. Our data additionally indicate that the correlation observed between p21 and vimentin expression levels results from p21 transcriptional activity being regulated by vimentin. Indeed, downregulating vimentin resulted in a significant decrease in p21 mRNA and protein expression as well as in p21 promoter activity. Conversely, overexpressing vimentin triggered an increase in p21 promoter activity in cells with a nuclear expression of vimentin.</p> <p>Conclusion</p> <p>Our results suggest that p21 mRNA tumor expression level could represent a refined prognostic factor for high risk NB patients. Our data also show that vimentin regulates p21 transcription; this is the first demonstration of a gene regulating function for this type III-intermediate filament.</p
Associations of HIV and prevalent type 2 diabetes mellitus in the context of obesity in South Africa.
BACKGROUND: It is unclear how rising obesity among people with HIV (PWH) impacts their risk of type 2 diabetes mellitus (diabetes). We examined associations between HIV, prevalent diabetes and adiposity among South African PWH and their peers without HIV (PWOH). METHODS: HIV status was ascertained by antibody testing. Diabetes was defined as current use of oral hypoglycemics, insulin, and/or HbA1c ≥6.5%. Adiposity was measured by body mass index (BMI), waist circumference and waist-to-height ratio. Their associations were examined using sex-stratified multivariable fractional polynomial generalized linear models, reporting adjusted prevalence and prevalence ratios (adjPR). RESULTS: The mean age among 1,254 PWH and 4,381 PWOH was 41 years (95%CI 28, 56). The prevalence of diabetes among males was similar between PWH [11.3% (7.1, 15.5)] and PWOH [9.8% (8.5, 11.1); p=0.740]. By contrast, diabetes prevalence was higher among female PWOH [15.7% (14.4, 17.0)] than female PWH [10.5 (8.3, 12.8)%; adjPR: 0.67 (0.51, 0.82); p<0.001]. This difference was accentuated with obesity but reversed with leanness. At BMI ≥25 kg/m2, female PWH had lower diabetes prevalence [adjPR: 0.58 (0.41, 0.76); p<0.001] than female PHIV. In contrast, at BMI <18 kg/m2, female PWH had higher prevalence [adjPR: 1.72 (-1.53, 4.96); p=0.756] than female PWOH. CONCLUSION: We found sex-specific differences in the relationship between adiposity and diabetes prevalence by HIV serostatus in South Africa. Notably, females living with obesity and HIV had lower prevalence of diabetes than females living with obesity and without HIV, which may have particular implications for diabetes prevention programs in the region
HIPPIE: Integrating Protein Interaction Networks with Experiment Based Quality Scores
Protein function is often modulated by protein-protein interactions (PPIs) and therefore defining the partners of a protein helps to understand its activity. PPIs can be detected through different experimental approaches and are collected in several expert curated databases. These databases are used by researchers interested in examining detailed information on particular proteins. In many analyses the reliability of the characterization of the interactions becomes important and it might be necessary to select sets of PPIs of different confidence levels. To this goal, we generated HIPPIE (Human Integrated Protein-Protein Interaction rEference), a human PPI dataset with a normalized scoring scheme that integrates multiple experimental PPI datasets. HIPPIE's scoring scheme has been optimized by human experts and a computer algorithm to reflect the amount and quality of evidence for a given PPI and we show that these scores correlate to the quality of the experimental characterization. The HIPPIE web tool (available at http://cbdm.mdc-berlin.de/tools/hippie) allows researchers to do network analyses focused on likely true PPI sets by generating subnetworks around proteins of interest at a specified confidence level
Spleen Vagal Denervation Inhibits the Production of Antibodies to Circulating Antigens
BACKGROUND: Recently the vagal output of the central nervous system has been shown to suppress the innate immune defense to pathogens. Here we investigated by anatomical and physiological techniques the communication of the brain with the spleen and provided evidence that the brain has the capacity to stimulate the production of antigen specific antibodies by its parasympathetic autonomic output. METHODOLOGY/PRINCIPAL FINDINGS: This conclusion was reached by successively demonstrating that: 1. The spleen receives not only sympathetic input but also parasympathetic input. 2. Intravenous trinitrophenyl-ovalbumin (TNP-OVA) does not activate the brain and does not induce an immune response. 3. Intravenous TNP-OVA with an inducer of inflammation; lipopolysaccharide (LPS), activates the brain and induces TNP-specific IgM. 4. LPS activated neurons are in the same areas of the brain as those that provide parasympathetic autonomic information to the spleen, suggesting a feed back circuit between brain and immune system. Consequently we investigated the interaction of the brain with the spleen and observed that specific parasympathetic denervation but not sympathetic denervation of the spleen eliminates the LPS-induced antibody response to TNP-OVA. CONCLUSIONS/SIGNIFICANCE: These findings not only show that the brain can stimulate antibody production by its autonomic output, it also suggests that the power of LPS as adjuvant to stimulate antibody production may also depend on its capacity to activate the brain. The role of the autonomic nervous system in the stimulation of the adaptive immune response may explain why mood and sleep have an influence on antibody production
Prolonged Depression-Like Behavior Caused by Immune Challenge: Influence of Mouse Strain and Social Environment
Immune challenge by bacterial lipopolysaccharide (LPS) causes short-term
behavioral changes indicative of depression. The present study sought to explore
whether LPS is able to induce long-term changes in depression-related behavior
and whether such an effect depends on mouse strain and social context. LPS (0.83
mg/kg) or vehicle was administered intraperitoneally to female CD1 and C57BL/6
mice that were housed singly or in groups of 4. Depression-like behavior was
assessed with the forced swim test (FST) 1 and 28 days post-treatment.
Group-housed CD1 mice exhibited depression-like behavior 1 day post-LPS, an
effect that leveled off during the subsequent 28 days, while the behavior of
singly housed CD1 mice was little affected. In contrast, singly housed C57BL/6
mice responded to LPS with an increase in depression-like behavior that was
maintained for 4 weeks post-treatment and confirmed by the sucrose preference
test. Group-housed C57BL/6 mice likewise displayed an increased depression-like
behavior 4 weeks post-treatment. The behavioral changes induced by LPS in
C57BL/6 mice were associated with a particularly pronounced rise of
interleukin-6 in blood plasma within 1 day post-treatment and with changes in
the dynamics of the corticosterone response to the FST. The current data
demonstrate that immune challenge with LPS is able to induce prolonged
depression-like behavior, an effect that depends on genetic background (strain).
The discovery of an experimental model of long-term depression-like behavior
after acute immune challenge is of relevance to the analysis of the epigenetic
and pathophysiologic mechanisms of immune system-related affective
disorders
- …
