3,764 research outputs found

    Pretreatment of citrus by-products affects polyphenol recovery:a review

    Get PDF
    A large amount of citrus waste is generated annually. This waste is of great economic worth, since it contains high levels of polyphenols, which have attracted scientific interest due to their potent antimicrobial and antiradical activities. Pretreatment is a crucial step that precedes the extraction process and influences the yields and quality of polyphenols. This review emphasizes the effect of different drying processes, such as freeze drying, hot-air drying, vacuum drying, microwave drying, infrared drying, and high-speed drying, on the polyphenol retention in citrus by-products. Further treatments of the dried citrus by-products for assisting the liberation of bound polyphenols are also provided and comprehensively discussed

    VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia

    Get PDF
    Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. it controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells

    Two-phase gravity currents in porous media

    Get PDF
    We develop a model describing the buoyancy-driven propagation of two-phase gravity currents, motivated by problems in groundwater hydrology and geological storage of carbon dioxide (CO2). In these settings, fluid invades a porous medium saturated with an immiscible second fluid of different density and viscosity. The action of capillary forces in the porous medium results in spatial variations of the saturation of the two fluids. Here, we consider the propagation of fluid in a semi-infinite porous medium across a horizontal, impermeable boundary. In such systems, once the aspect ratio is large, fluid flow is mainly horizontal and the local saturation is determined by the vertical balance between capillary and gravitational forces. Gradients in the hydrostatic pressure along the current drive fluid flow in proportion to the saturation-dependent relative permeabilities, thus determining the shape and dynamics of two-phase currents. The resulting two-phase gravity current model is attractive because the formalism captures the essential macroscopic physics of multiphase flow in porous media. Residual trapping of CO2 by capillary forces is one of the key mechanisms that can permanently immobilize CO2 in the societally important example of geological CO2 sequestration. The magnitude of residual trapping is set by the areal extent and saturation distribution within the current, both of which are predicted by the two-phase gravity current model. Hence the magnitude of residual trapping during the post-injection buoyant rise of CO2 can be estimated quantitatively. We show that residual trapping increases in the presence of a capillary fringe, despite the decrease in average saturation

    Prevalence, Predictors & Prevention of Motion Sickness in Zero-G Parabolic Flights

    Get PDF
    INTRODUCTION Zero-G parabolic flight reproduces the weightlessness of space for short periods of time. However motion sickness may affect some fliers. The aim was to assess the extent of this problem and to find possible predictors and modifying factors. METHODS Airbus Zero-G flights consist of 31 parabolas performed in blocks. Each parabola consisted of 20s 0g sandwiched by 20s hypergravity of 1.5-1.8g. The survey covered n=246 person-flights (193 Males 53 Females), aged (M+/-SD) 36.0+/-11.3 years. An anonymous questionnaire included motion sickness rating (1=OK to 6=Vomiting), Motion Sickness Susceptibility Questionnaire (MSSQ), anti-motion sickness medication, prior Zero-G experience, anxiety level, and other characteristics. RESULTS Participants had lower MSSQ percentile scores 27.4+/-28.0 than the population norm of 50. Motion sickness was experienced by 33% and 12% vomited. Less motion sickness was predicted by older age, greater prior Zero-G flight experience, medication with scopolamine, lower MSSQ scores, but not gender nor anxiety. Sickness ratings in fliers pre-treated with scopolamine (1.81+/-1.58) were lower than for non-medicated fliers (2.93+/-2.16), and incidence of vomiting in fliers using scopolamine treatment was reduced by half to a third. Possible confounding factors including age, sex, flight experience, MSSQ, could not account for this. CONCLUSION Motion sickness affected one third of Zero-G fliers, despite being intrinsically less motion sickness susceptible compared to the general population. Susceptible individuals probably try to avoid such a provocative environment. Risk factors for motion sickness included younger age and higher MSSQ scores. Protective factors included prior Zero-G flight experience (habituation) and anti-motion sickness medication

    Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly

    No full text
    Inverse sphere shaped Ni arrays were fabricated by electrodeposition on Si through the guided self-assembly of polystyrene latex spheres in Si/SiO2 patterns. It is shown that the size commensurability of the etched tracks is critical for the long range ordering of the spheres. Moreover, noncommensurate guiding results in the reproducible periodic triangular distortion of the close packed self-assembly. Magnetoresistance measurements on the Ni arrays were performed showing room temperature anisotropic magnetoresistance of 0.85%. These results are promising for self-assembled patterned storage media and magnetoresistance devices

    Dynamical simulation of current fluctuations in a dissipative two-state system

    Full text link
    Current fluctuations in a dissipative two-state system have been studied using a novel quantum dynamics simulation method. After a transformation of the path integrals, the tunneling dynamics is computed by deterministic integration over the real-time paths under the influence of colored noise. The nature of the transition from coherent to incoherent dynamics at low temperatures is re-examined.Comment: 4 pages, 4 figures; to appear in Phys. Rev. Letter

    Designing processing and fermentation conditions for long-life set yoghurt for made-in-transit (MIT) product

    Get PDF
    Extending yoghurt fermentations could facilitate yoghurt distribution by allowing the fermentation to occur during transportation - a concept known as "made-in-transit" (MIT). The objective was to determine the starter culture composition, inoculum size and fermentation temperature for extending yoghurt fermentations to 168 h. The yoghurt was processed using a milk base sterilized by ultra-high temperature (UHT) treatment at 138C for 6 s. Factorial experiments for yoghurt processing were designed with starter culture combinations of STLB (Streptococcus thermophilus with Lactobacillus delbrueckii subsp. bulgaricus) and STLA (S. thermophilus with L. acidophilus), inoculum sizes of 2.0 and 0.2% (v/v) and fermentation temperatures of 25 or 35C. The fermentation was monitored over 168 h using pH, starter culture concentration and firmness. The combination of STLA, and a 0.2% inoculum, fermented at 25C extended the yoghurt fermentation to 168 h; however, no gel formed. The best product was produced with a STLB starter combination of 2.0% inoculum fermented at 35C for 24 h. This shows the constraints and limitations of applying the MIT concept to a fermented food

    Sequence randomness and polymer collapse transitions

    Full text link
    Contrary to expectations based on Harris' criterion, chain disorder with frustration can modify the universality class of scaling at the theta transition of heteropolymers. This is shown for a model with random two-body potentials in 2D on the basis of exact enumeration and accurate Monte Carlo results. When frustration grows beyond a certain finite threshold, the temperature below which disorder becomes relevant coincides with the theta one and scaling exponents definitely start deviating from those valid for homopolymers.Comment: 4 pages, 4 eps figure

    Theory of periodic swarming of bacteria: application to Proteus mirabilis

    Get PDF
    The periodic swarming of bacteria is one of the simplest examples for pattern formation produced by the self-organized collective behavior of a large number of organisms. In the spectacular colonies of Proteus mirabilis (the most common species exhibiting this type of growth) a series of concentric rings are developed as the bacteria multiply and swarm following a scenario periodically repeating itself. We have developed a theoretical description for this process in order to get a deeper insight into some of the typical processes governing the phenomena in systems of many interacting living units. All of our theoretical results are in excellent quantitative agreement with the complete set of available observations.Comment: 11 pages, 8 figure

    A reaction-diffusion model for the growth of avascular tumor

    Full text link
    A nutrient-limited model for avascular cancer growth including cell proliferation, motility and death is presented. The model qualitatively reproduces commonly observed morphologies for primary tumors, and the simulated patterns are characterized by its gyration radius, total number of cancer cells, and number of cells on tumor periphery. These very distinct morphological patterns follow Gompertz growth curves, but exhibit different scaling laws for their surfaces. Also, the simulated tumors incorporate a spatial structure composed of a central necrotic core, an inner rim of quiescent cells and a narrow outer shell of proliferating cells in agreement with biological data. Finally, our results indicate that the competition for nutrients among normal and cancer cells may be a determinant factor in generating papillary tumor morphology.Comment: 9 pages, 6 figures, to appear in PR
    corecore