2,648 research outputs found
Water/rock interactions in experimentally simulated dirty snowball and dirty iceball cometary nuclei
In the dirty snowball model for cometary nuclei, comet-nucleus materials are regarded as mixtures of volatile ices and relatively non-volatile minerals or chemical compounds. Carbonaceous chondrite meteorites are regarded as useful analogs for the rocky component. To help elucidate the possible physical geochemistry of cometary nuclei, preliminary results are reported of calorimetric experiments with two-component systems involving carbonaceous chondrites and water ice. Based on collective knowledge of the physics of water ice, three general types of interactions can be expected between water and minerals at sub-freezing temperatures: (1) heterogeneous nucleation of ice by insoluble minerals; (2) adsorption of water vapor by hygroscopic phases; and (3) freezing- and melting-point depression of liquid water sustained by soluble minerals. The relative and absolute magnitude of all three effects are expected to vary with mineral composition
Iddingsite in the Nakhla meteorite: TEM study of mineralogy and texture of pre-terrestrial (Martian?) alterations
Rusty-colored veinlets and patches in the Nakhla meteorite, identified as iddingsite, are pre-terrestrial. The rusty material is iddingsite (smectites + hematite + ferrihydrite); like terrestrial iddingsites, it probably formed during low-temperature interaction of olivine and water. Fragments of rusty material with host olivine were removed from thin sections of Nakhla with a tungsten needle. Fragments were embedded in epoxy, microtomed to 100 nanometers thickness, and mounted on Cu grids. Phase identifications were by Analytical Electron Microscopy/Energy Dispersive X-ray Analysis (EM/EDX) standardless chemical analyses (for silicates), electron diffraction (hematite and ferrihydrite), and lattice fringe imaging. This iddingsite in Nakhla is nearly identical to some formed on Earth, suggesting similar conditions of formation on the Shergottites-Nakhlites-Chassigny (SNC) meteorite parent planet. A more detailed account of the results is presented
Topological Defects and the Spin Glass Phase of Cuprates
We propose that the spin glass phase of cuprates is due to the proliferation
of topological defects of a spiral distortion of the antiferromagnet order. Our
theory explains straightforwardly the simultaneous existence of short range
incommensurate magnetic correlations and complete a-b symmetry breaking in this
phase. We show via a renormalization group calculation that the collinear
O(3)/O(2) symmetry is unstable towards the formation of local non-collinear
correlations. A critical disorder strength is identified beyond which
topological defects proliferate already at zero temperature.Comment: 7 pages, 2 figures. Final version with some changes and one replaced
figur
Recommended from our members
Effects of rain shelter or simulated rain during grain filling and maturation on subsequent wheat grain quality in the UK
The effects of simulated additional rain (ear wetting, 25 mm) or of rain shelter imposed at different periods after anthesis on grain quality at maturity and the dynamics of grain filling and desiccation were investigated in UK field-grown crops of wheat (Triticum aestivum L., cvar Tybalt) in 2011 and in 2012 when June–August rainfall was 255.0 and 214.6 mm, respectively, and above the decadal mean (157.4 mm).
Grain filling and desiccation were quantified well by broken-stick regressions and Gompertz curves, respectively. Rain shelter for 56 (2011) or 70 d (2012) after anthesis, and to a lesser extent during late maturation only, resulted in more rapid desiccation and hence progress to harvest maturity whereas ear wetting had negligible effects, even when applied four times. Grain-filling duration was also affected as above in 2011, but with no significant effect in 2012. In both years, there were strong positive associations between final grain dry weight and duration of filling.
The treatments affected all grain quality traits in 2011: nitrogen (N) and sulphur (S) concentrations, N:S ratio, sodium dodecyl sulphate (SDS) sedimentation volume, Hagberg Falling Number (HFN), and the incidence of blackpoint. Only N concentration and blackpoint were affected significantly by treatments in 2012. Rain shelter throughout grain filling reduced N concentration, whereas rain shelter reduced the incidence of blackpoint and ear wetting increased it. In 2011, rain shelter throughout reduced S concentration, increased N:S ratio and reduced SDS. Treatment effects on HFN were not consistent within or between years. Nevertheless, a comparison between the extreme treatment means in 2012 indicated damage from late rain combined with ear wetting resulted in a reduction of c. 0.7 s in HFN/mm August rainfall, whilst that between samples taken immediately after ear wetting at harvest maturity or 7 d later suggested recovery from damage to HFN upon re-drying in planta.
Hence, the incidence of blackpoint was the only grain quality trait affected consistently by the diverse treatments. The remaining aspects of grain quality were comparatively resilient to rain incident upon developing and maturing ears of cvar Tybalt. No consistent temporal patterns of sensitivity to shelter or ear wetting were detected for any aspect of grain quality
Thermal Analyzer for Planetary Soil (TAPS): an in Situ Instrument for Mineral and Volatile-element Measurements
Thermal Analyzer for Planetary Soil (TAPS) offers a specific implementation for the generic thermal analyzer/evolved-gas analyzer (TA/EGA) function included in the Mars Environmental Survey (MESUR) strawman payload; applications to asteroids and comets are also possible. The baseline TAPS is a single-sample differential scanning calorimeter (DSC), backed by a capacitive-polymer humidity sensor, with an integrated sampling mechanism. After placement on a planetary surface, TAPS acquires 10-50 mg of soil or sediment and heats the sample from ambient temperature to 1000-1300 K. During heating, DSC data are taken for the solid and evolved gases are swept past the water sensor. Through ground based data analysis, multicomponent DSC data are deconvolved and correlated with the water release profile to quantitatively determine the types and relative proportions of volatile-bearing minerals such as clays and other hydrates, carbonates, and nitrates. The rapid-response humidity sensors also achieve quantitative analysis of total water. After conclusion of soil-analysis operations, the humidity sensors become available for meteorology. The baseline design fits within a circular-cylindrical volume less than 1000 cm(sup 3), occupies 1.2 kg mass, and consumes about 2 Whr of power per analysis. Enhanced designs would acquire and analyze multiple samples and employ additional microchemical sensors for analysis of CO2, SO2, NO(x), and other gaseous species. Atmospheric pumps are also being considered as alternatives to pressurized purge gas
Magnetic susceptibility of a CuO2 plane in the La2CuO4 system: I. RPA treatment of the Dzyaloshinskii-Moriya Interactions
Motivated by recent experiments on undoped La2CuO4, which found pronounced
temperature-dependent anisotropies in the low-field magnetic susceptibility, we
have investigated a two-dimensional square lattice of S=1/2 spins that interact
via Heisenberg exchange plus the symmetric and anti-symmetric
Dzyaloshinskii-Moriya anisotropies. We describe the transition to a state with
long-ranged order, and find the spin-wave excitations, with a mean-field
theory, linear spin-wave analysis, and using Tyablikov's RPA decoupling scheme.
We find the different components of the susceptibility within all of these
approximations, both below and above the N'eel temperature, and obtain evidence
of strong quantum fluctuations and spin-wave interactions in a broad
temperature region near the transition.Comment: 20 pages, 2 column format, 22 figure
Abanilla y Jumilla en la Corona catalano-aragonesa (s. XIV)
"Homenaje al Profesor Juan Torres Fontes", Murcia, 1987, pp. 477-490.Estudia los problemas entre la Corona catalanoaragonesa y Castilla después de la sentencia arbitral de Torrellas, que puso fin a la guerra entre ambos estados dividiendo el reino de Murcia entre ambos; había que establecer sobre el terreno los límites comunes indicados por la sentencia. Hubo controversia sobre la jurisdicción de Jumilla y de Abanilla o Favanella, que correspondían en principio a la Corona de Aragón, pero que se perdieron finalmente, Abanilla en 1348 y Jumilla durante la guerra de Castilla contra la Corona catalanoaragonesa, conocida como guerra de los dos Pedros (1356-1369). El trabajo se ha reeditado después en M. T. FERRER I MALLOL, Entre la paz y la guerra. La Corona Catalano-aragonesa y Castilla en la Baja Edad Media, Barcelona, Institución Milá y Fontanals. CSIC, 2005.Peer reviewe
Sr impurity effects on the magnetic correlations of LaSrCuO
We examine the low-temperature magnetic properties of moderately doped
LaSrCuO paying particular attention to the spin-glass (SG) phase and the C-IC
transition as they are affected by Sr impurity disorder. New measurements of
the low-temperature susceptibility in the SG phase show an increase of an
anomalously small Curie constant with doping. This behaviour is explained in
terms of our theoretical work that finds small clusters of AFM correlated
regions separated by disordered domain walls. The domain walls lead to a
percolating sequence of paths connecting the impurities. We predict that for
this spin morphology the Curie constant should scale as , a
result that is quantitatively in agreement with experiment. Also, we find that
the magnetic correlations in the ground states in the SG phase are
commensurate, and that this behaviour should persist at higher temperatures
where the holes should move along the domain walls. However, our results show
that incommensurate correlations develop continuously around 5 % doping,
consistent with recent measurements by Yamada.Comment: 30 pages, revtex, 8 .ps format figures (2 meant to be in colour), to
be published in Physical Review B
Unifying the Phase Diagrams of the Magnetic and Transport Properties of La_(2-x)Sr_xCuO_4, 0 < x < 0.05
An extensive experimental and theoretical effort has led to a largely
complete mapping of the magnetic phase diagram of La_(2-x)Sr_xCuO_4, and a
microscopic model of the spin textures produced in the x < 0.05 regime has been
shown to be in agreement with this phase diagram. Here we use this same model
to derive a theory of the impurity-dominated, low temperature transport. Then,
we present an analysis of previously published data for two samples: x = 0.002
data from Chen et. al., and x = 0.04 data from Keimer et. al. We show that the
transport mechanisms in the two systems are the same, even though they are on
opposite sides of the observed insulator-to-metal transition. Our model of
impurity effects on the impurity band conduction, variable-range hopping
conduction, and coulomb gap conduction, is similar to that used to describe
doped semiconductors. However, for La_(2-x)Sr_xCuO_4 we find that in addition
to impurity-generated disorder effects, strong correlations are important and
must be treated on a equal level with disorder. On the basis of this work we
propose a phase diagram that is consistent with available magnetic and
transport experiments, and which connects the undoped parent compound with the
lowest x value for which La_(2-x)Sr_xCuO_4 is found to be superconducting, x
about 0.06.Comment: 7 pages revtex with one .ps figur
An Exact Diagonalization Demonstration of Incommensurability and Rigid Band Filling for N Holes in the t-J Model
We have calculated S(q) and the single particle distribution function
for N holes in the t - J model on a non--square sqrt{8} X sqrt{32} 16--site
lattice with periodic boundary conditions; we justify the use of this lattice
in compariosn to those of having the full square symmetry of the bulk. This new
cluster has a high density of vec k points along the diagonal of reciprocal
space, viz. along k = (k,k). The results clearly demonstrate that when the
single hole problem has a ground state with a system momentum of vec k =
(pi/2,pi/2), the resulting ground state for N holes involves a shift of the
peak of the system's structure factor away from the antiferromagnetic state.
This shift effectively increases continuously with N. When the single hole
problem has a ground state with a momentum that is not equal to k =
(pi/2,pi/2), then the above--mentioned incommensurability for N holes is not
found. The results for the incommensurate ground states can be understood in
terms of rigid--band filling: the effective occupation of the single hole k =
(pi/2,pi/2) states is demonstrated by the evaluation of the single particle
momentum distribution function . Unlike many previous studies, we show
that for the many hole ground state the occupied momentum states are indeed k =
(+/- pi/2,+/- pi/2) states.Comment: Revtex 3.0; 23 pages, 1 table, and 13 figures, all include
- …
