354 research outputs found
The hyperfine transition in light muonic atoms of odd Z
The hyperfine (hf) transition rates for muonic atoms have been re-measured
for select light nuclei, using neutron detectors to evaluate the time
dependence of muon capture. For F = 5.6 (2)
s for the hf transition rate, a value which is considerably more
accurate than previous measurements. Results are also reported for Na, Al, P,
Cl, and K; that result for P is the first positive identification.Comment: 12 pages including 5 tables and 4 figures, RevTex, submitted to Phys.
Rev.
Double radiative pion capture on hydrogen and deuterium and the nucleon's pion cloud
We report measurements of double radiative capture in pionic hydrogen and
pionic deuterium. The measurements were performed with the RMC spectrometer at
the TRIUMF cyclotron by recording photon pairs from pion stops in liquid
hydrogen and deuterium targets. We obtained absolute branching ratios of for hydrogen and for deuterium, and
relative branching ratios of double radiative capture to single radiative
capture of for hydrogen
and for
deuterium. For hydrogen, the measured branching ratio and photon energy-angle
distributions are in fair agreement with a reaction mechanism involving the
annihilation of the incident on the cloud of the target proton.
For deuterium, the measured branching ratio and energy-angle distributions are
qualitatively consistent with simple arguments for the expected role of the
spectator neutron. A comparison between our hydrogen and deuterium data and
earlier beryllium and carbon data reveals substantial changes in the relative
branching ratios and the energy-angle distributions and is in agreement with
the expected evolution of the reaction dynamics from an annihilation process in
S-state capture to a bremsstrahlung process in P-state capture. Lastly, we
comment on the relevance of the double radiative process to the investigation
of the charged pion polarizability and the in-medium pion field.Comment: 44 pages, 7 tables, 13 figures, submitted to Phys. Rev.
Ortho-para transition rate in -molecular hydrogen and the proton's induced pseudoscalar coupling
We report a measurement of the ortho-para transition rate in the pp
molecule. The experiment was conducted at TRIUMF via the measurement of the
time dependence of the 5.2 MeV neutrons from muon capture in liquid hydrogen.
The measurement yielded an ortho-para rate s that is substantially larger than the
earlier result of Bardin {\it et al.} We discuss the striking implications for
the proton's induced pseudoscalar coupling .Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
Observation of double radiative capture on pionic hydrogen
We report the first observation of double radiative capture on pionic
hydrogen. The experiment was conducted at the TRIUMF cyclotron using the RMC
spectrometer, and detected --ray coincidences following stops
in liquid hydrogen. We found the branching ratio for double radiative capture
to be . The measured
branching ratio and angle-energy distributions support the theoretical
prediction of a dominant contribution from the
annihilation mechanism.Comment: 4 Pages, 4 Figures. accepted for publication in Phys. Rev. Let
Radiative Muon Capture on Hydrogen and the Induced Pseudoscalar Coupling
The first measurement of the elementary process is reported. A photon pair spectrometer was used to measure
the partial branching ratio ( for photons of k >
60 MeV. The value of the weak pseudoscalar coupling constant determined from
the partial branching ratio is , where the first error is the quadrature sum of statistical
and systematic uncertainties and the second error is due to the uncertainty in
, the decay rate of the ortho to para molecule. This
value of g_p is 1.5 times the prediction of PCAC and pion-pole dominance.Comment: 13 pages, RevTeX type, 3 figures (encapsulated postscript), submitted
to Phys. Rev. Let
Mass splittings of nuclear isotopes in chiral soliton approach
The differences of the masses of nuclear isotopes with atomic numbers between
\~10 and ~30 can be described within the chiral soliton approach in
satisfactory agreement with data. Rescaling of the model is necessary for this
purpose - decrease of the Skyrme constant by about 30%, providing the "nuclear
variant" of the model. The asymmetric term in Weizsaecker-Bethe- Bacher mass
formula for nuclei can be obtained as the isospin dependent quantum correction
to the nucleus energy. Some predictions for the binding energies of neutron
rich nuclides are made in this way, from, e.g. Be-16 and B-19 to Ne-31 and
Na-32. Neutron rich nuclides with high values of isospin are unstable relative
to strong interactions. The SK4 (Skyrme) variant of the model, as well as SK6
variant (6-th order term in chiral derivatives in the lagrangian as solitons
stabilizer) are considered, and the rational map approximation is used to
describe multiskyrmions.Comment: 16 pages, 10 tables, 2 figures. Figures are added and few misprints
are removed. Submitted to Phys. Atom. Nucl. (Yad. Fiz.
Induced pseudoscalar coupling of the proton weak interaction
The induced pseudoscalar coupling is the least well known of the weak
coupling constants of the proton's charged--current interaction. Its size is
dictated by chiral symmetry arguments, and its measurement represents an
important test of quantum chromodynamics at low energies. During the past
decade a large body of new data relevant to the coupling has been
accumulated. This data includes measurements of radiative and non radiative
muon capture on targets ranging from hydrogen and few--nucleon systems to
complex nuclei. Herein the authors review the theoretical underpinnings of
, the experimental studies of , and the procedures and uncertainties
in extracting the coupling from data. Current puzzles are highlighted and
future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic
Nucleon axial and pseudoscalar form factors from the covariant Faddeev equation
We compute the axial and pseudoscalar form factors of the nucleon in the
Dyson-Schwinger approach. To this end, we solve a covariant three-body Faddeev
equation for the nucleon wave function and determine the matrix elements of the
axialvector and pseudoscalar isotriplet currents. Our only input is a
well-established and phenomenologically successful ansatz for the
nonperturbative quark-gluon interaction. As a consequence of the axial
Ward-Takahashi identity that is respected at the quark level, the
Goldberger-Treiman relation is reproduced for all current-quark masses. We
discuss the timelike pole structure of the quark-antiquark vertices that enters
the nucleon matrix elements and determines the momentum dependence of the form
factors. Our result for the axial charge underestimates the experimental value
by 20-25% which might be a signal of missing pion-cloud contributions. The
axial and pseudoscalar form factors agree with phenomenological and lattice
data in the momentum range above Q^2 ~ 1...2 GeV^2.Comment: 17 pages, 7 figures, 1 tabl
Display of probability densities for data from a continuous distribution
Based on cumulative distribution functions, Fourier series expansion and
Kolmogorov tests, we present a simple method to display probability densities
for data drawn from a continuous distribution. It is often more efficient than
using histograms.Comment: 5 pages, 4 figures, presented at Computer Simulation Studies XXIV,
Athens, GA, 201
- …
