39 research outputs found

    A Phase III Trial of Tirasemtiv as a Potential Treatment for Amyotrophic Lateral Sclerosis

    Get PDF
    Objective: To assess the efficacy of tirasemtiv, a fast skeletal muscle troponin activator, vs. placebo in patients with amyotrophic lateral sclerosis. Methods: VITALITY-ALS (NCT02496767) was a multinational, double-blind, randomized, placebo-controlled clinical trial. Participants tolerating 2 weeks of open-label tirasemtiv (125 mg twice daily) were randomized 3:2:2:2 to placebo or one of three target tirasemtiv dose levels, using an escalating dosage protocol lasting 28 days. The primary outcome measure was changed in slow vital capacity (SVC) at 24 weeks. Secondary endpoints included a change in muscle strength and time to respiratory milestones of disease progression. Results: Of 744 participants, 565 tolerated open-label tirasemtiv and received randomized treatment. By 24 weeks, 23 (12.2%) placebo-treated participants discontinued study treatment vs. 129 (34.2%) randomized to tirasemtiv. SVC declined by 14.4% (95% CI: ˆ’16.8, ˆ’11.9) in the placebo group and 13.4% (95% CI: ˆ’15.3, ˆ’11.6) in the tirasemtiv group (p = 0.56). Secondary endpoints did not show significant differences. However, participants who tolerated tirasemtiv at their randomized dose showed a numeric trend toward a dose-related slowing of decline in SVC (p = 0.11). Dizziness, fatigue, nausea, weight loss, and insomnia occurred more frequently on tirasemtiv. Serious adverse events were similar across groups. Conclusions: Tirasemtiv did not alter the decline of SVC or significantly impact secondary outcome measures. Poor tolerability of tirasemtiv may have contributed to this result. However, participants tolerating their intended dose exhibited a trend toward treatment benefit on SVC, suggesting the underlying mechanism of action may still hold promise, as is being tested with a different fast skeletal muscle troponin activator (NCT03160898)

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Tract-specific analysis improves sensitivity of spinal cord diffusion MRI to cross-sectional and longitudinal changes in amyotrophic lateral sclerosis

    No full text
    © 2020, The Author(s). Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease that causes progressive degeneration of motor neurons in the brain and the spinal cord. Corticospinal tract degeneration is a defining feature of ALS. However, there have been very few longitudinal, controlled studies assessing diffusion MRI (dMRI) metrics in different fiber tracts along the spinal cord in general or the corticospinal tract in particular. Here we demonstrate that a tract-specific analysis, with segmentation of ascending and descending tracts in the spinal cord white matter, substantially increases the sensitivity of dMRI to disease-related changes in ALS. Our work also identifies the tracts and spinal levels affected in ALS, supporting electrophysiologic and pathologic evidence of involvement of sensory pathways in ALS. We note changes in diffusion metrics and cord cross-sectional area, with enhanced sensitivity to disease effects through a multimodal analysis, and with strong correlations between these metrics and spinal components of ALSFRS-R

    Tract-specific analysis improves sensitivity of spinal cord diffusion MRI to cross-sectional and longitudinal changes in amyotrophic lateral sclerosis

    No full text
    AbstractAmyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease that causes progressive degeneration of motor neurons in the brain and the spinal cord. Corticospinal tract degeneration is a defining feature of ALS. However, there have been very few longitudinal, controlled studies assessing diffusion MRI (dMRI) metrics in different fiber tracts along the spinal cord in general or the corticospinal tract in particular. Here we demonstrate that a tract-specific analysis, with segmentation of ascending and descending tracts in the spinal cord white matter, substantially increases the sensitivity of dMRI to disease-related changes in ALS. Our work also identifies the tracts and spinal levels affected in ALS, supporting electrophysiologic and pathologic evidence of involvement of sensory pathways in ALS. We note changes in diffusion metrics and cord cross-sectional area, with enhanced sensitivity to disease effects through a multimodal analysis, and with strong correlations between these metrics and spinal components of ALSFRS-R.</jats:p
    corecore