2,610 research outputs found

    Photon-bunching measurement after 2x25km of standard optical fibers

    Full text link
    To show the feasibility of a long distance partial Bell-State measurement, a Hong-Ou-Mandel experiment with coherent photons is reported. Pairs of degenerate photons at telecom wavelength are created by parametric down conversion in a periodically poled lithium niobate waveguide. The photon pairs are separated in a beam-splitter and transmitted via two fibers of 25km. The wave-packets are relatively delayed and recombined on a second beam-splitter, forming a large Mach-Zehnder interferometer. Coincidence counts between the photons at the two output modes are registered. The main challenge consists in the trade-off between low count rates due to narrow filtering and length fluctuations of the 25km long arms during the measurement. For balanced paths a Hong-Ou-Mandel dip with a visibility of 47.3% is observed, which is close to the maximal theoretical value of 50% developed here. This proves the practicability of a long distance Bell state measurement with two independent sources, as e.g. required in an entanglement swapping configuration in the scale of tens of km.Comment: 6 pages, 5 figure

    Integrated optical source of polarization entangled photons at 1310 nm

    Get PDF
    We report the realization of a new polarization entangled photon-pair source based on a titanium-indiffused waveguide integrated on periodically poled lithium niobate pumped by a CW laser at 655nm655 nm. The paired photons are emitted at the telecom wavelength of 1310nm1310 nm within a bandwidth of 0.7nm0.7 nm. The quantum properties of the pairs are measured using a two-photon coalescence experiment showing a visibility of 85%. The evaluated source brightness, on the order of 10510^5 pairs s1GHz1mW1s^{-1} GHz^{-1} mW^{-1}, associated with its compactness and reliability, demonstrates the source's high potential for long-distance quantum communication.Comment: There is a typing mistake in the previous version in the visibility equation. This mistake doesn't change the result

    Detector imperfections in photon-pair source characterization

    Full text link
    We analyze how imperfections in single-photon detectors impact the characterization of photon-pair sources. We perform exact calculations to reveal the effects of multi-pair emissions and of noisy, non-unit efficiency, non photon-number resolving detections on the Cauchy-Schwarz parameter, on the second order auto-correlation and cross-correlation functions, and on the visibilities of both Hong-Ou-Mandel and Bell-like interferences. We consider sources producing either two-mode squeezed states or states with a Poissonian photon distribution. The proposed formulas are useful in practice to determine the impacts of multi-pair emissions and dark counts in standard tests used in quantum optics.Comment: 9 pages, 11 figure

    Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation

    Full text link
    In this paper we demonstrate an active polarization drift compensation scheme for optical fibres employed in a quantum key distribution experiment with polarization encoded qubits. The quantum signals are wavelength multiplexed in one fibre along with two classical optical side channels that provide the control information for the polarization compensation scheme. This set-up allows us to continuously track any polarization change without the need to interrupt the key exchange. The results obtained show that fast polarization rotations of the order of 40*pi rad/s are effectively compensated for. We demonstrate that our set-up allows continuous quantum key distribution even in a fibre stressed by random polarization fluctuations. Our results pave the way for Bell-state measurements using only linear optics with parties separated by long-distance optical fibres

    Polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength

    Get PDF
    We report the realization of a fiber coupled polarization entangled photon-pair source at 1310 nm based on a birefringent titanium in-diffused waveguide integrated on periodically poled lithium niobate. By taking advantage of a dedicated and high-performance setup, we characterized the quantum properties of the pairs by measuring two-photon interference in both Hong-Ou-Mandel and standard Bell inequality configurations. We obtained, for the two sets of measurements, interference net visibilities reaching nearly 100%, which represent important and competitive results compared to similar waveguide-based configurations already reported. These results prove the relevance of our approach as an enabling technology for long-distance quantum communication.Comment: 13 pages, 4 figures, to appear in New Journal of Physic
    corecore