30 research outputs found

    Oxygen depletion in coastal seas and the effective spawning stock biomass of an exploited fish species

    Get PDF
    Environmental conditions may have previously underappreciated effects on the reproductive processes of commercially exploited fish populations, for example eastern Baltic cod, that are living at the physiological limits of their distribution. In the Baltic Sea, salinity affects neutral egg buoyancy, which is positively correlated with egg survival, as only water layers away from the oxygen consumption-dominated sea bottom contain sufficient oxygen. Egg buoyancy is positively correlated to female spawner age/size. From observations in the Baltic Sea, a field-based relationship between egg diameter and buoyancy (floating depth) could be established. Hence, based on the age structure of the spawning stock, we quantify the number of effective spawners, which are able to reproduce under ambient hydrographic conditions. For the time period 1993–2010, our results revealed large variations in the horizontal extent of spawning habitat (1000–20 000 km2) and oxygen-dependent egg survival (10–80%). The novel concept of an effective spawning stock biomass takes into account offspring that survive depending on the spawning stock age/size structure, if reproductive success is related to egg buoyancy and the extent of hypoxic areas. Effective spawning stock biomass reflected the role of environmental conditions for Baltic cod recruitment better than the spawning stock biomass alone, highlighting the importance of including environmental information in ecosystem-based management approaches

    Potential pathways of invasion and dispersal of Mnemiopsis leidyi A. Agassiz 1865 in the Baltic Sea

    Get PDF
    The rapid spread of Mnemiopsis leidyi across the entire Baltic Sea after its first observation in 2006 gave rise to the question of its invasion pathway and the possible vector of its transport. To investigate pathways of M. leidyi invasion, the years 2005–2008 have been simulated by a three-dimensional coupled sea ice-ocean model of the Baltic Sea. In addition, a Lagrangian particle-tracking model has been utilized to test possible transport routes of this invader for 2006/2007. Based on the model, we exclude advection from the Kattegat as the main area of origin of M. leidyi and further spreading through the entire Baltic Sea. To explain the dispersion of M. leidyi in 2007 an earlier invasion already in 2005 is most probable. Alternatively, an invasion originating from main harbors with high ship traffic could also be a potential pathway. Drift simulations with drifter release in the main harbors are in good agreement with the observed distribution pattern of M. leidyi

    Seasonal changes and population dynamics of the ctenophore Mnemiopsis leidyi after its first year of invasion in the Kiel Fjord, Western Baltic Sea

    Get PDF
    We analyzed the seasonal variations of the ctenophore Mnemiopsis leidyi weekly collected since its first record in the western Baltic Sea in October 2006. The distribution pattern together with the seasonal dynamics and population outbreaks in late summer 2007 indicate recent successfully establishment of M. leidyi in this area. Seasonal changes showed two periods of high reproductive activity characterized by a population structure dominated by small size classes, followed by an increase of larger ones. These results further revealed that the bulk of the population remains in deep layers during the periods of low population density, whereas it appeared situated in upper layers during the proliferation of the species. We further emphasized the strength of the population outbreaks, which can reach abundances >10-fold higher in time periods shorter than a week. The predatory impact this species may have in pelagic ecosystems warns on the importance of its recent range of expansion

    The influence of temperature on the development of Baltic Sea sprat (Sprattus sprattus) eggs and yolk sac larvae

    Get PDF
    In spring 2004 and 2005 we performed two sets of experiments with Baltic sprat (Sprattus sprattus balticus Schneider) eggs and larvae from the Bornholm Basin simulating ten different temperature scenarios. The goal of the present study was to analyse and parameterise temperature effects on the duration of developmental stages, on the timing of important ontogenetic transitions, growth during the yolk sac phase as well as on the survival success of eggs and early larval stages. Egg development and hatching showed exponential temperature dependence. No hatching was observed above 14.7°C and hatching success was significantly reduced below 3.4°C. Time to eye pigmentation, as a proxy for mouth gape opening, decreased with increasing temperatures from 17 days post hatch at 3.4°C to 7 days at 13°C whereas the larval yolk sac phase was shortened from 20 to 10 days at 3.8 and 10°C respectively. Maximum survival duration of non-fed larvae was 25 days at 6.8°C. Comparing the experimental results of Baltic sprat with existing information on sprat from the English Channel and North Sea differences were detected in egg development rate, thermal adaptation and in yolk sac depletion rate (YSDR). Sprat eggs from the English Channel showed significantly faster development and the potential to develop at temperatures higher than 14.7°C. North Sea sprat larvae were found to have a lower YSDR compared to larvae from the Baltic Sea. In light of the predictions for global warming, Baltic sprat stocks could experience improved conditions for egg development and surviva

    Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat

    Get PDF
    Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids

    Offshore-Windparks: Chance für Fischerei und Naturschutz

    Get PDF
    In den vergangenen zehn Jahren sind in der Nordsee mehr als 3.600 Windturbinen aufgestellt worden, in den kommenden Jahren werden hunderte weitere Turbinen hinzukommen. Offshore- Windkraft wächst – und das hat in den stark genutzten Küstenregionen Auswirkungen auf die Fischerei und den Naturschutz. Dennoch bieten Windparks eine große Chance für die Nutzung mariner Ressourcen

    Fish

    Get PDF
    The Wadden Sea is an important area for many fish species. The shallow coastal area forms the transition between the estuaries and the North Sea (Figure 1). The inner Wadden Sea is connected with several estuaries, which are characterized by a pronounced salinity gradient. The outer Wadden Sea, demarked by the barrier islands, is connected with and influenced by the North Sea. Many fish species rely on the Wadden Sea for at least one of their life stages. A suite of marine fish (flatfish, other groundfish and pelagic fish species) reach the Wadden Sea as post-larvae and spend their juvenile phase there (marine juveniles), benefitting from the high food availability and shelter from predators (van der Veer et al., 2000; Elliott et al., 2007). Other species inhabit the region en route to either marine or freshwater spawning sites (diadromous species), during certain times of the year (marine seasonal migrants) or only occasionally (marine adventitious species) (Elliott et al., 2007). Apart from the temporary visitors, the Wadden Sea is also inhabited by resident species that spend (almost) their entire life in the Wadden Sea. Comprehensive lists of fish species occurring in the Wadden Sea have been published previously (Witte and Zijlstra, 1978; Bolle et al, 2009). In this report, we list all species observed in long-term monitoring programmes during the last decade. For the status and trends, we focus on a selection of species and functional groups, which are typically found in the Wadden Sea. We also discuss elasmobranchs and other rare species (paragraph 2). As the trilateral fish targets (CWSS, 2010) are described in an abstract manner, they cannot be evaluated quantitatively. Therefore, this report was restricted to describing and classifying trends. The trilateral targets are evaluated only in a qualitative way. However, we sketch how progress towards testable targets can be achieved (paragraph 3)

    Salinity Gradient of the Baltic Sea Limits the Reproduction and Population Expansion of the Newly Invaded Comb Jelly Mnemiopsis leidyi

    Get PDF
    The recent invasion of the comb jelly Mnemiopsis leidyi into northern European waters is of major public and scientific concern. One of the key features making M. leidyi a successful invader is its high fecundity combined with fast growth rates. However, little is known about physiological limitations to its reproduction and consequent possible abiotic restrictions to its dispersal. To evaluate the invasion potential of M. leidyi into the brackish Baltic Sea we studied in situ egg production rates in different regions and at different salinities in the laboratory, representing the salinity gradient of the Baltic Sea. During October 2009 M. leidyi actively reproduced over large areas of the Baltic Sea. Egg production rates scaled with animal size but decreased significantly with decreasing salinity, both in the field (7–29) and in laboratory experiments (6–33). Temperature and zooplankton, i.e. food abundance, could not explain the observed differences. Reproduction rates at conditions representing the Kattegat, south western and central Baltic Sea, respectively, were 2.8 fold higher at the highest salinities (33 and 25) than at intermediate salinities (10 and 15) and 21 times higher compared from intermediate to the lowest salinity tested (6). Higher salinity areas such as the Kattegat, and to a lower extent the south western Baltic, seem to act as source regions for the M. leidyi population in the central Baltic Sea where a self-sustaining population, due to the low salinity, cannot be maintained

    Ocean current connectivity propelling the secondary spread of a marine invasive comb jelly across western Eurasia

    Get PDF
    Aim: Invasive species are of increasing global concern. Nevertheless, the mechanisms driving furtherdistribution after the initial establishment of non-native species remain largely unresolved, especiallyin marine systems. Ocean currents can be a major driver governing range occupancy, but this hasnot been accounted for in most invasion ecology studies so far. We investigate how well initialestablishment areas are interconnected to later occupancy regions to test for the potential role ofocean currents driving secondary spread dynamics in order to infer invasion corridors and thesource–sink dynamics of a non-native holoplanktonic biological probe species on a continental scale.Location: Western Eurasia.Time period: 1980s–2016.Major taxa studied: ‘Comb jelly’ Mnemiopsis leidyi.Methods: Based on 12,400 geo-referenced occurrence data, we reconstruct the invasion historyof M. leidyi in western Eurasia. We model ocean currents and calculate their stability to match thetemporal and spatial spread dynamics with large-scale connectivity patterns via ocean currents.Additionally, genetic markers are used to test the predicted connectivity between subpopulations.Results: Ocean currents can explain secondary spread dynamics, matching observed range expansionsand the timing of first occurrence of our holoplanktonic non-native biological probe species,leading to invasion corridors in western Eurasia. In northern Europe, regional extinctions after coldwinters were followed by rapid recolonizations at a speed of up to 2,000 km per season. SourceJASPERS ET AL. | 815areas hosting year-round populations in highly interconnected regions can re-seed genotypes overlarge distances after local extinctions.Main conclusions: Although the release of ballast water from container ships may contribute tothe dispersal of non-native species, our results highlight the importance of ocean currents drivingsecondary spread dynamics. Highly interconnected areas hosting invasive species are crucial forsecondary spread dynamics on a continental scale. Invasion risk assessments should considerlarge-scale connectivity patterns and the potential source regions of non-native marine species
    corecore