5,224 research outputs found
Histological investigations on the thyroid glands of marine mammals (Phoca vitulina, Phocoena phocoena) and the possible implications of marine pollution
In 1988 and 1989, thousands of harbor seals (Phoca vitulina) died in the North Sea from phocine distemper infection. The morphology of thyroid glands from 40 harbor seals found dead on the North Sea coastlines of Schleswig-Holstein, Federal Republic of Germany, during an epizootic of phocine distemper, was compared with the morphology of thyroid glands from five healthy harbor seals collected in Iceland. Thyroid glands from seven harbor porpoises (Phocoena phocoena) found dead in 1990 on the North Sea coastlines also were evaluated. Colloid depletion and fibrosis were found in the thyroid glands of harbor seals which died during the epizootic, but not in animals from Iceland. Thyroid glands of the porpoises showed similar lesions, but to a lesser degree, than those observed in the North Sea seals
Quantum key distribution using non-classical photon number correlations in macroscopic light pulses
We propose a new scheme for quantum key distribution using macroscopic
non-classical pulses of light having of the order 10^6 photons per pulse.
Sub-shot-noise quantum correlation between the two polarization modes in a
pulse gives the necessary sensitivity to eavesdropping that ensures the
security of the protocol. We consider pulses of two-mode squeezed light
generated by a type-II seeded parametric amplification process. We analyze the
security of the system in terms of the effect of an eavesdropper on the bit
error rates for the legitimate parties in the key distribution system. We also
consider the effects of imperfect detectors and lossy channels on the security
of the scheme.Comment: Modifications:added new eavesdropping attack, added more references
Submitted to Physical Review A [email protected]
Orbitally Driven Spin Pairing in the 3D Non-Magnetic Mott Insulator BaVS3: Evidence from Single Crystal Studies
Static electrical and magnetic properties of single crystal BaVS_3 were
measured over the structural (T_S=240K), metal-insulator (T_MI=69K), and
suspected orbital ordering (T_X=30K) transitions. The resistivity is almost
isotropic both in the metallic and insulating states. An anomaly in the
magnetic anisotropy at T_X signals a phase transition to an ordered low-T
state. The results are interpreted in terms of orbital ordering and spin
pairing within the lowest crystal field quasi-doublet. The disordered insulator
at T_X<T<T_MI is described as a classical liquid of non-magnetic pairs.Comment: 4 pages, 5 figures, revtex, epsf, and multicol style. Problem with
figures fixed. To appear in Phys. Rev. B Rap. Com
Electromagnetic induced transparency and slow light in interacting quantum degenerate atomic gases
We systematically develop the full quantum theory for the electromagnetic
induced transparency (EIT) and slow light properties in ultracold Bose and
Fermi gases. It shows a very different property from the classical theory which
assumes frozen atomic motion. For example, the speed of light inside the atomic
gases can be changed dramatically near the Bose-Einstein condensation
temperature, while the presence of the Fermi sea can destroy the EIT effect
even at zero temperature. From experimental point of view, such quantum EIT
property is mostly manifested in the counter-propagating excitation schemes in
either the low-lying Rydberg transition with a narrow line width or in the D2
transitions with a very weak coupling field. We further investigate the
interaction effects on the EIT for a weakly interacting Bose-Einstein
condensate, showing an inhomogeneous broadening of the EIT profile and
nontrivial change of the light speed due to the quantum many-body effects
beyond mean field energy shifts.Comment: 7 figure
Investigation of the thermal stability of Mg/Co periodic multilayers for EUV applications
We present the results of the characterization of Mg/Co periodic multilayers
and their thermal stability for the EUV range. The annealing study is performed
up to a temperature of 400\degree C. Images obtained by scanning transmission
electron microscopy and electron energy loss spectroscopy clearly show the good
quality of the multilayer structure. The measurements of the EUV reflectivity
around 25 nm (~49 eV) indicate that the reflectivity decreases when the
annealing temperature increases above 300\degreeC. X-ray emission spectroscopy
is performed to determine the chemical state of the Mg atoms within the Mg/Co
multilayer. Nuclear magnetic resonance used to determine the chemical state of
the Co atoms and scanning electron microscopy images of cross sections of the
Mg/Co multilayers reveal changes in the morphology of the stack from an
annealing temperature of 305\degreee;C. This explains the observed reflectivity
loss.Comment: Published in Applied Physics A: Materials Science \& Processing
Published at
http://www.springerlink.com.chimie.gate.inist.fr/content/6v396j6m56771r61/ 21
page
Observation of coherent many-body Rabi oscillations
A two-level quantum system coherently driven by a resonant electromagnetic
field oscillates sinusoidally between the two levels at frequency
which is proportional to the field amplitude [1]. This phenomenon, known as the
Rabi oscillation, has been at the heart of atomic, molecular and optical
physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi
oscillations in isolated single atoms or dilute gases form the basis for
metrological applications such as atomic clocks and precision measurements of
physical constants [3]. Both inhomogeneous distribution of coupling strength to
the field and interactions between individual atoms reduce the visibility of
the oscillation and may even suppress it completely. A remarkable
transformation takes place in the limit where only a single excitation can be
present in the sample due to either initial conditions or atomic interactions:
there arises a collective, many-body Rabi oscillation at a frequency
involving all N >> 1 atoms in the sample [4]. This is true even
for inhomogeneous atom-field coupling distributions, where single-atom Rabi
oscillations may be invisible. When one of the two levels is a strongly
interacting Rydberg level, many-body Rabi oscillations emerge as a consequence
of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to
quantum information processing based on this effect [5]. Here we report initial
observations of coherent many-body Rabi oscillations between the ground level
and a Rydberg level using several hundred cold rubidium atoms. The strongly
pronounced oscillations indicate a nearly complete excitation blockade of the
entire mesoscopic ensemble by a single excited atom. The results pave the way
towards quantum computation and simulation using ensembles of atoms
A Rydberg Quantum Simulator
Following Feynman and as elaborated on by Lloyd, a universal quantum
simulator (QS) is a controlled quantum device which reproduces the dynamics of
any other many particle quantum system with short range interactions. This
dynamics can refer to both coherent Hamiltonian and dissipative open system
evolution. We investigate how laser excited Rydberg atoms in large spacing
optical or magnetic lattices can provide an efficient implementation of a
universal QS for spin models involving (high order) n-body interactions. This
includes the simulation of Hamiltonians of exotic spin models involving
n-particle constraints such as the Kitaev toric code, color code, and lattice
gauge theories with spin liquid phases. In addition, it provides the
ingredients for dissipative preparation of entangled states based on
engineering n-particle reservoir couplings. The key basic building blocks of
our architecture are efficient and high-fidelity n-qubit entangling gates via
auxiliary Rydberg atoms, including a possible dissipative time step via optical
pumping. This allows to mimic the time evolution of the system by a sequence of
fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg
gates.Comment: 8 pages, 4 figure
- …
