203 research outputs found

    Status Report AD-4/ACE

    Get PDF

    Low-energy Antiproton Interaction with Helium

    Get PDF
    An ab initio potential for the interaction of the neutral helium atom with antiprotons and protons is calculated using the Born-Oppenheimer approximation. Using this potential, the annihilation cross section for antiprotons in the energy range 0.01 microvolt to 1 eV is calculated.Comment: 13 pages, 7 figures, LaTe

    Dense Antihydrogen: Its Production and Storage to Envision Antimatter Propulsion

    Full text link
    We discuss the possibility that dense antihydrogen could provide a path towards a mechanism for a deep space propulsion system. We concentrate at first, as an example, on Bose-Einstein Condensate (BEC) antihydrogen. In a Bose-Einstein Condensate, matter (or antimatter) is in a coherent state analogous to photons in a laser beam, and individual atoms lose their independent identity. This allows many atoms to be stored in a small volume. In the context of recent advances in producing and controlling BECs, as well as in making antihydrogen, this could potentially provide a revolutionary path towards the efficient storage of large quantities of antimatter, perhaps eventually as a cluster or solid.Comment: 12 pages, 3 figure

    Charge-Transfer from Molecular-Hydrogen to Stored O-2+ and O-3+ Ions

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org

    Radiative recombination of bare Bi83+: Experiment versus theory

    Get PDF
    Electron-ion recombination of completely stripped Bi83+ was investigated at the Experimental Storage Ring (ESR) of the GSI in Darmstadt. It was the first experiment of this kind with a bare ion heavier than argon. Absolute recombination rate coefficients have been measured for relative energies between ions and electrons from 0 up to about 125 eV. In the energy range from 15 meV to 125 eV a very good agreement is found between the experimental result and theory for radiative recombination (RR). However, below 15 meV the experimental rate increasingly exceeds the RR calculation and at Erel = 0 eV it is a factor of 5.2 above the expected value. For further investigation of this enhancement phenomenon the electron density in the interaction region was set to 1.6E6/cm3, 3.2E6/cm3 and 4.7E6/cm3. This variation had no significant influence on the recombination rate. An additional variation of the magnetic guiding field of the electrons from 70 mT to 150 mT in steps of 1 mT resulted in periodic oscillations of the rate which are accompanied by considerable changes of the transverse electron temperature.Comment: 12 pages, 14 figures, to be published in Phys. Rev. A, see also http://www.gsi.de/ap/ and http://www.strz.uni-giessen.de/~k

    Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Fly's Eye Experiment

    Get PDF
    We have measured the cosmic ray spectrum above 10^17.2 eV using the two air fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, photo-tube and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extra-galactic sources.Comment: 4 pages, 4 figures. Uses 10pt.rtx, amsmath.sty, aps.rtx, revsymb.sty, revtex4.cl

    Quantum corrected electron holes

    Full text link
    The theory of electron holes is extended into the quantum regime. The Wigner--Poisson system is solved perturbatively based in lowest order on a weak, standing electron hole. Quantum corrections are shown to lower the potential amplitude and to increase the number of deeply trapped electrons. They, hence, tend to bring this extreme non--equilibrium state closer to thermodynamic equilibrium, an effect which can be attributed to the tunneling of particles in this mixed state system.Comment: 12 pages, 3 figure
    corecore