1,807 research outputs found
Direct Josephson coupling between superconducting flux qubits
We have demonstrated strong antiferromagnetic coupling between two
three-junction flux qubits based on a shared Josephson junction, and therefore
not limited by the small inductances of the qubit loops. The coupling sign and
magnitude were measured by coupling the system to a high-quality
superconducting tank circuit. Design modifications allowing to continuously
tune the coupling strength and/or make the coupling ferromagnetic are
discussed.Comment: REVTeX 4, 4 pages, 5 figures; v2: completely rewritten, added
finite-temperature results and proposals for ferromagnetic galvanic couplin
Geometric observation for the Bures fidelity between two states of a qubit
In this Brief Report, we present a geometric observation for the Bures
fidelity between two states of a qubit.Comment: 4 pages, 1 figure, RevTex, Accepted by Phys. Rev.
Fatigue analysis-based numerical design of stamping tools made of cast iron
This work concerns stress and fatigue analysis of stamping tools made of cast iron with an essentially pearlitic matrix and containing foundry defects. Our approach consists at first, in coupling the stamping numerical processing simulations and structure analysis in order to improve the tool stiffness geometry for minimizing the stress state and optimizing their fatigue lifetime. The method consists in simulating the stamping process by considering the tool as a perfect rigid body. The estimated contact pressure is then used as boundary condition for FEM structure loading analysis of the tool. The result of this analysis is compared with the critical stress limit depending on the automotive model. The acceptance of this test allows calculating the fatigue lifetime of the critical zone by using the S–N curve of corresponding load ratio. If the prescribed tool life requirements are not satisfied, then the critical region of the tool is redesigned and the whole simulation procedures are reactivated. This method is applied for a cast iron EN-GJS-600-3. The stress-failure (S–N) curves for this material is determined at room temperature under push pull loading with different load ratios R0σmin/σmax0−2, R0−1 and R00.1. The effects of the foundry defects are determined by SEM observations of crack initiation sites. Their presence in tested specimens is associated with a reduction of fatigue lifetime by a factor of 2. However, the effect of the load ratio is more important
Spin Fidelity for Three-qubit Greenberger-Horne-Zeilinger and W States Under Lorentz Transformations
Constructing the reduced density matrix for a system of three massive
spin particles described by a wave packet with Gaussian momentum
distribution and a spin part in the form of GHZ or W state, the fidelity for
the spin part of the system is investigated from the viewpoint of moving
observers in the jargon of special relativity. Using a numerical approach, it
turns out that by increasing the boost speed, the spin fidelity decreases and
reaches to a non-zero asymptotic value that depends on the momentum
distribution and the amount of momentum entanglement.Comment: 12pages, 2 figure
Observation of the spin-charge thermal isolation of ferromagnetic Ga_{0.94}Mn_{0.06}As by time-resolved magneto-optical measurement
The dynamics of magnetization under femtosecond optical excitation is studied
in a ferromagnetic semiconductor Ga_{0.94}Mn_{0.06}As with a time-resolved
magneto-optical Kerr effect measurement with two color probe beams. The
transient reflectivity change indicates the rapid rise of the carrier
temperature and relaxation to a quasi-thermal equilibrium within 1 ps, while a
very slow rise of the spin temperature of the order of 500ps is observed. This
anomalous behavior originates from the thermal isolation between the charge and
spin systems due to the spin polarization of carriers (holes) contributing to
ferromagnetism. This constitutes experimental proof of the half-metallic nature
of ferromagnetic Ga_{0.94}Mn_{0.06}As arising from double exchange type
mechanism originates from the d-band character of holes
Cauchy boundaries in linearized gravitational theory
We investigate the numerical stability of Cauchy evolution of linearized
gravitational theory in a 3-dimensional bounded domain. Criteria of robust
stability are proposed, developed into a testbed and used to study various
evolution-boundary algorithms. We construct a standard explicit finite
difference code which solves the unconstrained linearized Einstein equations in
the 3+1 formulation and measure its stability properties under Dirichlet,
Neumann and Sommerfeld boundary conditions. We demonstrate the robust stability
of a specific evolution-boundary algorithm under random constraint violating
initial data and random boundary data.Comment: 23 pages including 3 figures and 2 tables, revte
'Return to equilibrium' for weakly coupled quantum systems: a simple polymer expansion
Recently, several authors studied small quantum systems weakly coupled to
free boson or fermion fields at positive temperature. All the approaches we are
aware of employ complex deformations of Liouvillians or Mourre theory (the
infinitesimal version of the former). We present an approach based on polymer
expansions of statistical mechanics. Despite the fact that our approach is
elementary, our results are slightly sharper than those contained in the
literature up to now. We show that, whenever the small quantum system is known
to admit a Markov approximation (Pauli master equation \emph{aka} Lindblad
equation) in the weak coupling limit, and the Markov approximation is
exponentially mixing, then the weakly coupled system approaches a unique
invariant state that is perturbatively close to its Markov approximation.Comment: 23 pages, v2-->v3: Revised version: The explanatory section 1.7 has
changed and Section 3.2 has been made more explici
- …
