2,080 research outputs found

    Collision frequency dependence of polarization current in neoclassical tearing modes

    Full text link
    The neoclassical polarization current, generated when a magnetic island propagates through a tokamak plasma, is believed to influence the initial stage of the neoclassical tearing mode evolution. Understanding the strength of its contribution in the relevant plasma collision frequency regimes for future tokamaks such as ITER is crucial for the successful control and/or avoidance of the neoclassical tearing mode. A nonlinear drift kinetic theory is employed to determine the full collision frequency dependence of the neoclassical polarization current in the small island limit, comparable to the trapped ion orbit width. Focusing on the region away from the island separatrix (where a layer with a complex mix of physics processes exists), we evaluate for the first time the variation of the neoclassical ion polarization current in the transition regime between the analytically tractable collisionless and collisional limits. In addition, the island propagation frequency-dependence of the neoclassical polarization current and its contribution to the island evolution is revealed. For a range of propagation frequencies, we find that the neoclassical polarization current is a maximum in the intermediate collision frequency regime analyzed here - a new and unexpected result.Comment: Accepted by Physics of Plasmas, 18 pages, 7 figure

    Quantum-number projection in the path-integral renormalization group method

    Full text link
    We present a quantum-number projection technique which enables us to exactly treat spin, momentum and other symmetries embedded in the Hubbard model. By combining this projection technique, we extend the path-integral renormalization group method to improve the efficiency of numerical computations. By taking numerical calculations for the standard Hubbard model and the Hubbard model with next nearest neighbor transfer, we show that the present extended method can extremely enhance numerical accuracy and that it can handle excited states, in addition to the ground state.Comment: 11 pages, 7 figures, submitted to Phys. Rev.

    Quantum Phase Transitions to Charge Order and Wigner Crystal Under Interplay of Lattice Commensurability and Long-Range Coulomb Interaction

    Full text link
    Relationship among Wigner crystal, charge order and Mott insulator is studied by the path-integral renormalization group method for two-dimensional lattices with long-range Coulomb interaction. In contrast to Hartree-Fock results, the solid stability drastically increases with lattice commensurability. The transition to liquid occurs at the electron gas parameter rs2r_s \sim 2 for the filling n=1/2n=1/2 showing large reduction from rs35r_s \sim 35 in the continuum limit. Correct account of quantum fluctuations are crucial to understand charge-order stability generally observed only at simple fractional fillings and nature of quantum liquids away from them.Comment: 4 pages including 7 figure

    Improvement of solar cycle prediction: Plateau of solar axial dipole moment

    Full text link
    Aims. We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar cycle prediction by the surface flux transport (SFT) model. Methods. We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the surface flux transport model for the interpretation and prediction of the observed axial dipole moment. Results. We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although the significant number of sunspots are still emerging. The results indicates that the newly emerged magnetic flux does not contributes to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allows us to predict the axial dipole moment in Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment of Cycle 24/25 minimum is 60--80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 even weaker than the current Cycle 24. Conclusions. The plateau of the solar axial dipole moment is an important feature for the longer prediction of the solar cycle based on the SFT model.Comment: 5 pages, 3 figures, accepted for publication in A&A Lette

    Drude Weight of the Two-Dimensional Hubbard Model -- Reexamination of Finite-Size Effect in Exact Diagonalization Study --

    Full text link
    The Drude weight of the Hubbard model on the two-dimensional square lattice is studied by the exact diagonalizations applied to clusters up to 20 sites. We carefully examine finite-size effects by consideration of the appropriate shapes of clusters and the appropriate boundary condition beyond the imitation of employing only the simple periodic boundary condition. We successfully capture the behavior of the Drude weight that is proportional to the squared hole doping concentration. Our present result gives a consistent understanding of the transition between the Mott insulator and doped metals. We also find, in the frequency dependence of the optical conductivity, that the mid-gap incoherent part emerges more quickly than the coherent part and rather insensitive to the doping concentration in accordance with the scaling of the Drude weight.Comment: 9 pages with 10 figures and 1 table. accepted in J. Phys. Soc. Jp

    Suppressed Coherence due to Orbital Correlations in the Ferromagnetically Ordered Metallic Phase of Mn Compounds

    Full text link
    Small Drude weight DD together with small specific heat coefficient γ\gamma observed in the ferromagnetic phase of R1x_{1-x}Ax_xMnO3_3 (R=La, Pr, Nd, Sm; A=Ca, Sr, Ba) are analyzed in terms of a proximity effect of the Mott insulator. The scaling theory for the metal-insulator transition with the critical enhancement of orbital correlations toward the staggered ordering of two ege_g orbitals such as 3x2r23x^2-r^2 and 3y2r23y^2-r^2 symmetries may lead to the critical exponents of DδuD \propto \delta^{u} and γδv\gamma \propto \delta^v with u=3/2u=3/2 and v=0v=0. The result agrees with the experimental indications.Comment: 4 pages LaTeX using jpsj.sty. To appear in J. Phys. Soc. Jpn. 67(1998)No.

    Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method

    Full text link
    Filling-control metal-insulator transition on the two-dimensional Hubbard model is investigated by using the correlator projection method, which takes into account momentum dependence of the free energy beyond the dynamical mean-field theory. The phase diagram of metals and Mott insulators is analyzed. Lifshitz transitions occur simultaneously with metal-insulator transitions at large Coulomb repulsion. On the other hand, they are separated each other for lower Coulomb repulsion, where the phase sandwiched by the Lifshitz and metal-insulator transitions appears to show violation of the Luttinger sum rule. Through the metal-insulator transition, quasiparticles retain nonzero renormalization factor and finite quasi-particle weight in the both sides of the transition. This supports that the metal-insulator transition is caused not by the vanishing renormalization factor but by the relative shift of the Fermi level into the Mott gap away from the quasiparticle band, in sharp contrast with the original dynamical mean-field theory. Charge compressibility diverges at the critical end point of the first-order Lifshitz transition at finite temperatures. The origin of the divergence is ascribed to singular momentum dependence of the quasiparticle dispersion.Comment: 24 pages including 10 figure

    Spin-gap phase in nearly-half-filled one-dimensional conductors coupled with phonons

    Full text link
    Asymptotic properties of nearly-half-filled one-dimensional conductors coupled with phonons are studied through a renormalization group method. Due to spin-charge coupling via electron-phonon interaction, the spin correlation varies with filling as well as the charge correlation. Depending on the relation between cut-off energy scales of the Umklapp process and of the electron-phonon interaction, various phases appear. We found a metallic phase with a spin gap and a dominant charge- density-wave correlation near half filling between a gapless density-wave phase (like in the doped repulsive Hubbard model) and a superconductor phase with a spin gap. The spin gap is produced by phonon-assisted backward scatterings which are interfered with the Umklapp process constructively or destructively depending on the character of electron-phonon coupling.Comment: 14 pages, revtex, replaced 5 ps figures, published in PR

    A gapless charge mode induced by the boundary states in the half-filled Hubbard open-chain

    Full text link
    We discuss the ground state and some excited states of the half-filled Hubbard model defined on an open chain with L sites, where only one of the boundary sites has a different value of chemical potential. We consider the case when the boundary site has a negative chemical potential -p and the Hubbard coupling U is positive. By an analytic method we show that when p is larger than the transfer integral some of the ground-state solutions of the Bethe ansatz equations become complex-valued. It follows that there is a ``surface phase transition'' at some critical value p_c; when p<p_c all the charge excitations have the gap for the half-filled band, while there exists a massless charge mode when p>p_c.Comment: Revtex, 25 pages, 3 eps figures; Full revision with Appendixes adde
    corecore