2,124 research outputs found
Steady-state evoked potentials possibilities for mental-state estimation
The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed
Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductor
A recent highlight in the study of high-Tc superconductors is the observation
of band renormalization / self-energy effects on the quasiparticles. This is
seen in the form of kinks in the quasiparticle dispersions as measured by
photoemission and interpreted as signatures of collective bosonic modes
coupling to the electrons. Here we compare for the first time the self-energies
in an optimally doped and strongly overdoped, non-superconducting single-layer
Bi-cuprate (Bi2Sr2CuO6). Besides the appearance of a strong overall weakening,
we also find that weight of the self-energy in the overdoped system shifts to
higher energies. We present evidence that this is related to a change in the
coupling to c-axis phonons due to the rapid change of the c-axis screening in
this doping range.Comment: 4 pages, 3 figure
Coupling Of The B1g Phonon To The Anti-Nodal Electronic States of Bi2Sr2Ca0.92Y0.08Cu2O(8+delta)
Angle-resolved photoemission spectroscopy (ARPES) on optimally doped
Bi2Sr2Ca0.92Y0.08Cu2O(8+delta) uncovers a coupling of the electronic bands to a
40 meV mode in an extended k-space region away from the nodal direction,
leading to a new interpretation of the strong renormalization of the electronic
structure seen in Bi2212. Phenomenological agreements with neutron and Raman
experiments suggest that this mode is the B1g oxygen bond-buckling phonon. A
theoretical calculation based on this assignment reproduces the electronic
renormalization seen in the data.Comment: 4 Pages, 4 Figures Updated Figures and Tex
Quantitative analysis of Sr2RuO4 ARPES spectra: Many-body interactions in a model Fermi liquid
ARPES spectra hold a wealth of information about the many-body interactions
in a correlated material. However, the quantitative analysis of ARPES spectra
to extract the various coupling parameters in a consistent manner is extremely
challenging, even for a model Fermi liquid system. We propose a fitting
procedure which allows quantitative access to the intrinsic lineshape,
deconvolved of energy and momentum resolution effects, of the correlated
2-dimensional material Sr2RuO4. For the first time in correlated 2-dimensional
materials, we find an ARPES linewidth that is narrower than its binding energy,
a key property of quasiparticles within Fermi liquid theory. We also find that
when the electron-electron scattering component is separated from the
electron-phonon and impurity scattering terms it decreases with a functional
form compatible with Fermi liquid theory as the Fermi energy is approached. In
combination with the previously determined Fermi surface, these results give
the first complete picture of a Fermi liquid system via ARPES. Furthermore, we
show that the magnitude of the extracted imaginary part of the self-energy is
in remarkable agreement with DC transport measurements.Comment: 10 pages, 5 figure
Insights into enterotoxigenic Escherichia coli diversity in Bangladesh utilizing genomic epidemiology
Fully Gapped Single-Particle Excitations in the Lightly Doped Cuprates
The low-energy excitations of the lightly doped cuprates were studied by
angle-resolved photoemission spectroscopy. A finite gap was measured over the
entire Brillouin zone, including along the d_{x^2 - y^2} nodal line. This
effect was observed to be generic to the normal states of numerous cuprates,
including hole-doped La_{2-x}Sr_{x}CuO_{4} and Ca_{2-x}Na_{x}CuO_{2}Cl_{2} and
electron-doped Nd_{2-x}Ce_{x}CuO_{4}. In all compounds, the gap appears to
close with increasing carrier doping. We consider various scenarios to explain
our results, including the possible effects of chemical disorder, electronic
inhomogeneity, and a competing phase.Comment: To appear in Phys. Rev.
- …
