435 research outputs found
Actual and Reference Evaporative Losses and Surface Coefficients of a Maize Field during Nongrowing (Dormant) Periods
Effective water resources planning, allocation, management, and use in agroecosystems require accurate quantification of actual evapotranspiration (ETc) during growing and nongrowing (dormant) periods. Prediction of ETc for a variety of vegetation surfaces during the growing season has been researched extensively, but relatively little information exists on evaporative losses during nongrowing periods for different surfaces. The objectives of this research were to evaluate ETc in relation to available energy, precipitation, and grass and alfalfa-reference ET (ETo and ETr) for a maize (Zea mays L.) field and to analyze the dynamics of surface coefficients (Kc) during the nongrowing period (October 15–April 30). The evaporative losses were measured using a Bowen ratio energy balance system (BREBS) on an hourly basis and averaged over 24 h for three consecutive nongrowing periods: 2004–2005 (Season I), 2005–2006 (Season II), and 2006–2007 (Season III). BREBS-measured ETc was approximately 50% of available energy (Rn – G; Rn is net radiation and G is soil heat flux density) during normal and wet seasons (Seasons I and III) and 41% of available energy during a dry season (Season II). Cumulative ETc ranged from 133 mm in Season II to 167 mm in Season III and exceeded precipitation by 21% during the dry season. The ratio of ETc to precipitation was 0.85 in Season I, 1.21 in Season II, and 0.41 in Season III. ETc was approximately 50% of ETo and 36% of ETr in both Seasons I and III, whereas in Season II, ETc was 32% of ETo and 23% of ETr. Overall, measured ETc during the dormant season was generally most strongly correlated with radiation terms, particularly Rn, albedo, incoming shortwave radiation, and outgoing longwave radiation. Average surface coefficients over the three seasons were 0.44 and 0.33 for grass and alfalfa-reference surfaces, respectively. Using geometric mean Kc values to calculate ETc using a Kc ETref approach over the entire nongrowing season yielded adequate predictions with overall root mean square deviations of 0.64 and 0.67 mm day–1 for ETo and ETr, respectively. Estimates of ETc using a dual crop coefficient approach were good on a seasonal basis, but performed less well on a daily basis. Regression equations that were developed (accounting for serial autocorrelation in the ETc and ETref time series) yielded good estimates of ETc. Considering nongrowing period evaporative losses in water budget calculations would enable water regulatory agencies to better account for water use in hydrologic balance calculations over the entire year rather than only for the growing season and to better assess the progression and availability of water resources for the next growing season
Actual and Reference Evaporative Losses and Surface Coefficients of a Maize Field during Nongrowing (Dormant) Periods
Effective water resources planning, allocation, management, and use in agroecosystems require accurate quantification of actual evapotranspiration (ETc) during growing and nongrowing (dormant) periods. Prediction of ETc for a variety of vegetation surfaces during the growing season has been researched extensively, but relatively little information exists on evaporative losses during nongrowing periods for different surfaces. The objectives of this research were to evaluate ETc in relation to available energy, precipitation, and grass and alfalfa-reference ET (ETo and ETr) for a maize (Zea mays L.) field and to analyze the dynamics of surface coefficients (Kc) during the nongrowing period (October 15–April 30). The evaporative losses were measured using a Bowen ratio energy balance system (BREBS) on an hourly basis and averaged over 24 h for three consecutive nongrowing periods: 2004–2005 (Season I), 2005–2006 (Season II), and 2006–2007 (Season III). BREBS-measured ETc was approximately 50% of available energy (Rn – G; Rn is net radiation and G is soil heat flux density) during normal and wet seasons (Seasons I and III) and 41% of available energy during a dry season (Season II). Cumulative ETc ranged from 133 mm in Season II to 167 mm in Season III and exceeded precipitation by 21% during the dry season. The ratio of ETc to precipitation was 0.85 in Season I, 1.21 in Season II, and 0.41 in Season III. ETc was approximately 50% of ETo and 36% of ETr in both Seasons I and III, whereas in Season II, ETc was 32% of ETo and 23% of ETr. Overall, measured ETc during the dormant season was generally most strongly correlated with radiation terms, particularly Rn, albedo, incoming shortwave radiation, and outgoing longwave radiation. Average surface coefficients over the three seasons were 0.44 and 0.33 for grass and alfalfa-reference surfaces, respectively. Using geometric mean Kc values to calculate ETc using a Kc ETref approach over the entire nongrowing season yielded adequate predictions with overall root mean square deviations of 0.64 and 0.67 mm day–1 for ETo and ETr, respectively. Estimates of ETc using a dual crop coefficient approach were good on a seasonal basis, but performed less well on a daily basis. Regression equations that were developed (accounting for serial autocorrelation in the ETc and ETref time series) yielded good estimates of ETc. Considering nongrowing period evaporative losses in water budget calculations would enable water regulatory agencies to better account for water use in hydrologic balance calculations over the entire year rather than only for the growing season and to better assess the progression and availability of water resources for the next growing season
Special issue on evapotranspiration measurement and modeling
Water availability for irrigation throughout the world has been reduced in recent years due to a combination of frequent droughts and competition for water resources among agricultural, industrial, and urban users. In addition, some major agricultural areas face moderate to significant reductions of rainfall, or changes in timing of stream flow due to changes in timing of snowmelt, as a result of global climate change. Under such conditions, sophisticated irrigation water management will be required to optimize water use efficiency and maintain sufficient levels of crop productivity and quality. A key factor to achieve these targets is the estimation of actual evapotranspiration (ET). Accurate determination of ET can be a viable tool in better utilization of water resources through well-designed irrigation management programs. Reliable estimates of ET are also vital to develop criteria for in-season irrigation management, water resource allocation, long-term estimates of water supply, demand and use, design and management of water resources infrastructure, and evaluation of the effect of land use and management changes on the water balance
Special issue on evapotranspiration measurement and modeling
Water availability for irrigation throughout the world has been reduced in recent years due to a combination of frequent droughts and competition for water resources among agricultural, industrial, and urban users. In addition, some major agricultural areas face moderate to significant reductions of rainfall, or changes in timing of stream flow due to changes in timing of snowmelt, as a result of global climate change. Under such conditions, sophisticated irrigation water management will be required to optimize water use efficiency and maintain sufficient levels of crop productivity and quality. A key factor to achieve these targets is the estimation of actual evapotranspiration (ET). Accurate determination of ET can be a viable tool in better utilization of water resources through well-designed irrigation management programs. Reliable estimates of ET are also vital to develop criteria for in-season irrigation management, water resource allocation, long-term estimates of water supply, demand and use, design and management of water resources infrastructure, and evaluation of the effect of land use and management changes on the water balance
Combined proteome and transcriptome analyses for the discovery of urinary biomarkers for urothelial carcinoma
Background:
Proteomic discovery of cancer biomarkers in body fluids is challenging because of their low abundance in a complex
background. Altered gene expression in tumours may not reflect protein levels in body fluids. We have tested combining gene
expression profiling of tumours with proteomic analysis of cancer cell line secretomes as a strategy to discover urinary biomarkers
for bladder cancer.
Methods:
We used shotgun proteomics to identify proteins secreted by three bladder cancer cell lines. Secreted proteins with
high mRNA levels in bladder tumours relative to normal urothelium were assayed by ELISA in urine samples from 642 patients.
Results:
Midkine and HAI-1 were significantly increased in bladder cancer patients, with the highest levels in invasive disease
(area under the receiver operating characteristic curve 0.89
vs
non-cancer). The urinary concentration of both proteins was too
high to be explained by bladder cancer associated haematuria and most likely arises by direct tumour secretion.
Conclusions:
This ‘dual-omic’ strategy identified tumour secreted proteins whose urine concentrations are increased significantly
by bladder cancer. Combined secretome-transcriptome analysis may be more useful than direct proteomic analysis of body fluids
for biomarker discovery in both bladder cancer and other tumour type
A summer heat wave decreases the immunocompetence of the mesograzer, Idotea baltica
Extreme events associated with global change will impose increasing stress on coastal organisms. How strong biological interactions such as the host–parasite arms-race are modulated by environmental change is largely unknown. The immune system of invertebrates, in particular phagocytosis and phenoloxidase activity response are key defence mechanisms against parasites, yet they may be sensitive to environmental perturbations. We here simulated an extreme event that mimicked the European heat wave in 2003 to investigate the effect of environmental change on the immunocompetence of the mesograzer Idotea baltica. Unlike earlier studies, our experiment aimed at simulation of the natural situation as closely as possible by using long acclimation, a slow increase in temperature and a natural community setting including the animals’ providence with natural food sources (Zostera marina and Fucus vesiculosus). Our results demonstrate that a simulated heat wave results in decreased immunocompetence of the mesograzer Idotea baltica, in particular a drop of phagocytosis by 50%. This suggests that global change has the potential to significantly affect host–parasite interactions
On malfunctioning software
Artefacts do not always do what they are supposed to, due to a variety of reasons, including manufacturing problems, poor maintenance, and normal wear-and-tear. Since software is an artefact, it should be subject to malfunctioning in the same sense in which other artefacts can malfunction. Yet, whether software is on a par with other artefacts when it comes to malfunctioning crucially depends on the abstraction used in the analysis. We distinguish between “negative” and “positive” notions of malfunction. A negative malfunction, or dysfunction, occurs when an artefact token either does not (sometimes) or cannot (ever) do what it is supposed to. A positive malfunction, or misfunction, occurs when an artefact token may do what is supposed to but, at least occasionally, it also yields some unintended and undesirable effects. We argue that software, understood as type, may misfunction in some limited sense, but cannot dysfunction. Accordingly, one should distinguish software from other technical artefacts, in view of their design that makes dysfunction impossible for the former, while possible for the latter
Evaluation of the performance of diagnostic methods of canine parvovirus-2 and canine enteric coronavirus infections under different storage conditions and determination of molecular characterization
Aim: This research was carried out to detect CPV and CCoV infections in
dogs in comparison with rapid kit and PCR and to determine the molecular
characterization of these infections in Konya region. Besides, it was aimed
to determine the sensitivity and specificity rates of the diagnostic tests after
fresh or freeze-thawed stool for infection diagnosis.
Materials and Methods: Faecal samples were collected from 50 unvaccinated,
0-12 months old dogs with diarrhoea symptoms at the shelter. The samples
were analysed for CPV and CCoV by rapid test and PCR test. After freezethawing,
the samples were checked again with the same tests.
Results: CPV was positively diagnosed by rapid test and PCR in 2 and 29 fresh
stool samples, respectively, and CCoV in 14 and 28 samples. CPV positive
samples did not change while CCoV was diagnosed as positive in 10 samples
and 28 samples by rapid test and PCR, respectively, after the freeze-thaw
procedure. Although there were no differences in the diagnosis of CPV, the
sensitivity of the rapid test in the diagnosis of CCoV decreased after the freezethaw
procedure. In addition, only CPV-2b type was detected in CPV positive
samples and both GI and GII subtypes were detected in CCoV positive samples
as molecular. In conclusion, it was observed that rapid tests are not sensitive
for accurate diagnosis of CPV and CCoV infections.
Conclusion: The importance of choosing molecular diagnostic methods and
using fresh samples for accurate diagnosis of virological infections can be
emphasized
Exploring invasiveness and versatility of used microhabitats of the globally invasive Gambusia holbrooki.
Introductions of non-native species can lead to severe impacts, including the decline of ecosystem function through deleterious impacts on species diversity. The successful establishment of non-native species in new environments is the first barrier a species must overcome, ultimately depending on its ability to either cope with or adapt to local site-specific conditions. Despite the widespread distribution and ecological consequences of many freshwater invaders, site-specific and climatic preferences are often unknown, as in the case of the Eastern mosquitofish Gambusia holbrooki, a global invader considered as a pervasive threat to endemic species. Here, we determined the ecological features and preferred site-specific conditions of G. holbrooki in Türkiye, which spans a wide range of diverse biogeographically distinct ecosystems, by surveying populations from 130 localities in 2016 and 2017. Gambusia holbrooki were detected by hand-net in 48 of these sites (19 lotic, 29 lentic). It showed a preference for shallow waters with medium sized rocks, and abundances differed spatially across a latitudinal gradient and was influenced predominantly by variations in pH. The only other factors predicting its presence were low current velocities and gravel substrate, highlighting its ecological versatility in utilising a wide range of microhabitats. Bioclimatic models suggest that G. holbrooki is found in areas with an average annual temperature ranging from 10 to 20 °C, but with temperature not being a limiting factor to its invasion. Gambusia holbrooki shows a preference for xeric freshwater ecosystems and endorheic basins, as well as temperate coastal rivers, temperate upland rivers, temperate floodplain rivers and wetlands, and tropical and subtropical coastal rivers. These results, particularly the wide occurrence with only few limiting factors, emphasise the invasion potential of mosquitofish and should substantiate the need for localised invasive species management and conservation efforts, particularly in smaller or insular areas where mosquitofish and endemic fish species co-exist
- …
