918 research outputs found
Systematic X-ray absorption study of hole doping in BSCCO - phases
X-ray absorption spectroscopy (XAS) on the O 1s threshold was applied to
Bi-based, single crystalline high temperature superconductors (HTc's), whose
hole densities in the CuO2 planes was varied by different methods. XAS gives
the intensity of the so-called pre-peak of the O 1s line due to the unoccupied
part of the Zhang-Rice (ZR) singlet state. The effects of variation of the
number n of CuO2 - planes per unit cell (n = 1,2,3) and the effect of
La-substitution for Sr for the n = 1 and n = 2 phase were studied
systematically. Furthermore the symmetry of the states could be probed by the
polarization of the impinging radiation.Comment: 4 pages, 2 figures, to appear in the proceedings of SCES2001, Ann
Arbor, August 6-10, 200
Quasiparticles and Energy Scaling in BiSrCaCuO (=1-3): Angle-Resolved Photoemission Spectroscopy
Angle-resolved photoemission spectroscopy (ARPES) has been performed on the
single- to triple-layered Bi-family high-{\it T} superconductors
(BiSrCaCuO, =1-3). We found a sharp
quasiparticle peak as well as a pseudogap at the Fermi level in the
triple-layered compound. Comparison among three compounds has revealed a
universal rule that the characteristic energies of superconducting and
pseudogap behaviors are scaled with the maximum {\it T}.Comment: 4 pages, 4 figure
Unusual electronic ground state of a prototype cuprate: band splitting of single CuO_2-plane Bi_2 Sr_(2-x) La_x CuO_(6+delta)
By in-situ change of polarization a small splitting of the Zhang-Rice singlet
state band near the Fermi level has been resolved for optimum doped (x=0.4)
BiSrLaCuO at the (pi,0)-point (R.Manzke et al.
PRB 63, R100504 (2001). Here we treat the momentum dependence and lineshape of
the split band by photoemission in the EDC-mode with very high angular and
energy resolution. The splitting into two destinct emissions could also be
observed over a large portion of the major symmetry line M, giving the
dispersion for the individual contributions. Since bi-layer effects can not be
present in this single-layer material the results have to be discussed in the
context of one-particle removal spectral functions derived from current
theoretical models. The most prominent are microscopic phase separation
including striped phase formation, coexisting antiferromagnetic and
incommensurate charge-density-wave critical fluctuations coupled to electrons
(hot spots) or even spin charge separation within the Luttinger liquid picture,
all leading to non-Fermi liquid like behavior in the normal state and having
severe consequences on the way the superconducting state forms. Especially the
possibilty of observing spinon and holon excitations is discussed.Comment: 5 pages, 4 figure
Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ
The electronic structure of the quasi-one-dimensional organic conductor
TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The
experimental spectra reveal significant discrepancies to band theory. We
demonstrate that the measured dispersions can be consistently mapped onto the
one-dimensional Hubbard model at finite doping. This interpretation is further
supported by a remarkable transfer of spectral weight as function of
temperature. The ARPES data thus show spectroscopic signatures of spin-charge
separation on an energy scale of the conduction band width.Comment: 4 pages, 4 figures; to appear in PR
Lifetime of d-holes at Cu surfaces: Theory and experiment
We have investigated the hole dynamics at copper surfaces by high-resolution
angle-resolved photoemission experiments and many-body quasiparticle GW
calculations. Large deviations from a free-electron-like picture are observed
both in the magnitude and the energy dependence of the lifetimes, with a clear
indication that holes exhibit longer lifetimes than electrons with the same
excitation energy. Our calculations show that the small overlap of d- and
sp-states below the Fermi level is responsible for the observed enhancement.
Although there is qualitative good agreement of our theoretical predictions and
the measured lifetimes, there still exist some discrepancies pointing to the
need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.
Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ
We study the electronic structure of the quasi-one-dimensional organic
conductor TTF-TCNQ by means of density-functional band theory, Hubbard model
calculations, and angle-resolved photoelectron spectroscopy (ARPES). The
experimental spectra reveal significant quantitative and qualitative
discrepancies to band theory. We demonstrate that the dispersive behavior as
well as the temperature-dependence of the spectra can be consistently explained
by the finite-energy physics of the one-dimensional Hubbard model at metallic
doping. The model description can even be made quantitative, if one accounts
for an enhanced hopping integral at the surface, most likely caused by a
relaxation of the topmost molecular layer. Within this interpretation the ARPES
data provide spectroscopic evidence for the existence of spin-charge separation
on an energy scale of the conduction band width. The failure of the
one-dimensional Hubbard model for the {\it low-energy} spectral behavior is
attributed to interchain coupling and the additional effect of electron-phonon
interaction.Comment: 18 pages, 9 figure
- …
