918 research outputs found

    Systematic X-ray absorption study of hole doping in BSCCO - phases

    Full text link
    X-ray absorption spectroscopy (XAS) on the O 1s threshold was applied to Bi-based, single crystalline high temperature superconductors (HTc's), whose hole densities in the CuO2 planes was varied by different methods. XAS gives the intensity of the so-called pre-peak of the O 1s line due to the unoccupied part of the Zhang-Rice (ZR) singlet state. The effects of variation of the number n of CuO2 - planes per unit cell (n = 1,2,3) and the effect of La-substitution for Sr for the n = 1 and n = 2 phase were studied systematically. Furthermore the symmetry of the states could be probed by the polarization of the impinging radiation.Comment: 4 pages, 2 figures, to appear in the proceedings of SCES2001, Ann Arbor, August 6-10, 200

    Quasiparticles and Energy Scaling in Bi2_2Sr2_2Can1_{n-1}Cun_nO2n+4_{2n+4} (n\it{n}=1-3): Angle-Resolved Photoemission Spectroscopy

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) has been performed on the single- to triple-layered Bi-family high-{\it Tc_c} superconductors (Bi2_2Sr2_2Can1_{n-1}Cun_nO2n+4_{2n+4}, n\it{n}=1-3). We found a sharp quasiparticle peak as well as a pseudogap at the Fermi level in the triple-layered compound. Comparison among three compounds has revealed a universal rule that the characteristic energies of superconducting and pseudogap behaviors are scaled with the maximum {\it Tc_c}.Comment: 4 pages, 4 figure

    Unusual electronic ground state of a prototype cuprate: band splitting of single CuO_2-plane Bi_2 Sr_(2-x) La_x CuO_(6+delta)

    Full text link
    By in-situ change of polarization a small splitting of the Zhang-Rice singlet state band near the Fermi level has been resolved for optimum doped (x=0.4) Bi2_{2}Sr2x_{2-x}Lax_{x}CuO6+δ_{6+\delta} at the (pi,0)-point (R.Manzke et al. PRB 63, R100504 (2001). Here we treat the momentum dependence and lineshape of the split band by photoemission in the EDC-mode with very high angular and energy resolution. The splitting into two destinct emissions could also be observed over a large portion of the major symmetry line Γ\GammaM, giving the dispersion for the individual contributions. Since bi-layer effects can not be present in this single-layer material the results have to be discussed in the context of one-particle removal spectral functions derived from current theoretical models. The most prominent are microscopic phase separation including striped phase formation, coexisting antiferromagnetic and incommensurate charge-density-wave critical fluctuations coupled to electrons (hot spots) or even spin charge separation within the Luttinger liquid picture, all leading to non-Fermi liquid like behavior in the normal state and having severe consequences on the way the superconducting state forms. Especially the possibilty of observing spinon and holon excitations is discussed.Comment: 5 pages, 4 figure

    Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ

    Get PDF
    The electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant discrepancies to band theory. We demonstrate that the measured dispersions can be consistently mapped onto the one-dimensional Hubbard model at finite doping. This interpretation is further supported by a remarkable transfer of spectral weight as function of temperature. The ARPES data thus show spectroscopic signatures of spin-charge separation on an energy scale of the conduction band width.Comment: 4 pages, 4 figures; to appear in PR

    Lifetime of d-holes at Cu surfaces: Theory and experiment

    Get PDF
    We have investigated the hole dynamics at copper surfaces by high-resolution angle-resolved photoemission experiments and many-body quasiparticle GW calculations. Large deviations from a free-electron-like picture are observed both in the magnitude and the energy dependence of the lifetimes, with a clear indication that holes exhibit longer lifetimes than electrons with the same excitation energy. Our calculations show that the small overlap of d- and sp-states below the Fermi level is responsible for the observed enhancement. Although there is qualitative good agreement of our theoretical predictions and the measured lifetimes, there still exist some discrepancies pointing to the need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.

    Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ

    Get PDF
    We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative discrepancies to band theory. We demonstrate that the dispersive behavior as well as the temperature-dependence of the spectra can be consistently explained by the finite-energy physics of the one-dimensional Hubbard model at metallic doping. The model description can even be made quantitative, if one accounts for an enhanced hopping integral at the surface, most likely caused by a relaxation of the topmost molecular layer. Within this interpretation the ARPES data provide spectroscopic evidence for the existence of spin-charge separation on an energy scale of the conduction band width. The failure of the one-dimensional Hubbard model for the {\it low-energy} spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction.Comment: 18 pages, 9 figure
    corecore