2,637 research outputs found
Nanoflare Activity in the Solar Chromosphere
We use ground-based images of high spatial and temporal resolution to search
for evidence of nanoflare activity in the solar chromosphere. Through close
examination of more than 10^9 pixels in the immediate vicinity of an active
region, we show that the distributions of observed intensity fluctuations have
subtle asymmetries. A negative excess in the intensity fluctuations indicates
that more pixels have fainter-than-average intensities compared with those that
appear brighter than average. By employing Monte Carlo simulations, we reveal
how the negative excess can be explained by a series of impulsive events,
coupled with exponential decays, that are fractionally below the current
resolving limits of low-noise equipment on high-resolution ground-based
observatories. Importantly, our Monte Carlo simulations provide clear evidence
that the intensity asymmetries cannot be explained by photon-counting
statistics alone. A comparison to the coronal work of Terzo et al. (2011)
suggests that nanoflare activity in the chromosphere is more readily occurring,
with an impulsive event occurring every ~360s in a 10,000 km^2 area of the
chromosphere, some 50 times more events than a comparably sized region of the
corona. As a result, nanoflare activity in the chromosphere is likely to play
an important role in providing heat energy to this layer of the solar
atmosphere.Comment: 7 pages, 3 figures, accepted into Ap
The nutritional management of surgical patients: enhanced recovery after surgery
Malnutrition has long been recognised as a risk factor for post-operative morbidity and mortality. Traditional metabolic and nutritional care of patients undergoing major elective surgery has emphasised pre-operative fasting and re-introduction of oral nutrition 3-5 d after surgery. Attempts to attenuate the consequent nutritional deficit and to influence post-operative morbidity and mortality have included parenteral, enteral and oral sip feeding. Recent studies have emphasised that an enhanced rate of recovery can be achieved by a multi-modal approach focused on modulating the metabolic status of the patient before (e.g. carbohydrate and fluid loading), during (e.g. epidural anaesthesia) and after (e.g. early oral feeding) surgery. Using such an approach preliminary results on patients undergoing elective colo-rectal surgery indicate a significant reduction in hospital stay (traditional care, n 48, median stay 10 d v. enhanced recovery programme, n 33, median stay 7d;
Propagating Wave Phenomena Detected in Observations and Simulations of the Lower Solar Atmosphere
We present high-cadence observations and simulations of the solar
photosphere, obtained using the Rapid Oscillations in the Solar Atmosphere
imaging system and the MuRAM magneto-hydrodynamic code, respectively. Each
dataset demonstrates a wealth of magneto-acoustic oscillatory behaviour,
visible as periodic intensity fluctuations with periods in the range 110-600 s.
Almost no propagating waves with periods less than 140s and 110s are detected
in the observational and simulated datasets, respectively. High concentrations
of power are found in highly magnetised regions, such as magnetic bright points
and intergranular lanes. Radiative diagnostics of the photospheric simulations
replicate our observational results, confirming that the current breed of
magneto-hydrodynamic simulations are able to accurately represent the lower
solar atmosphere. All observed oscillations are generated as a result of
naturally occurring magnetoconvective processes, with no specific input driver
present. Using contribution functions extracted from our numerical simulations,
we estimate minimum G-band and 4170 Angstrom continuum formation heights of 100
km and 25 km, respectively. Detected magneto-acoustic oscillations exhibit a
dominant phase delay of -8 degrees between the G-band and 4170 Angstrom
continuum observations, suggesting the presence of upwardly propagating waves.
More than 73% of MBPs (73% from observations, 96% from simulations) display
upwardly propagating wave phenomena, suggesting the abundant nature of
oscillatory behaviour detected higher in the solar atmosphere may be traced
back to magnetoconvective processes occurring in the upper layers of the Sun's
convection zone.Comment: 13 pages, 9 figures, accepted into Ap
The Velocity Distribution of Solar Photospheric Magnetic Bright Points
We use high spatial resolution observations and numerical simulations to
study the velocity distribution of solar photospheric magnetic bright points.
The observations were obtained with the Rapid Oscillations in the Solar
Atmosphere instrument at the Dunn Solar Telescope, while the numerical
simulations were undertaken with the MURaM code for average magnetic fields of
200 G and 400 G. We implemented an automated bright point detection and
tracking algorithm on the dataset, and studied the subsequent velocity
characteristics of over 6000 structures, finding an average velocity of
approximately 1 km/s, with maximum values of 7 km/s. Furthermore, merging
magnetic bright points were found to have considerably higher velocities, and
significantly longer lifetimes, than isolated structures. By implementing a new
and novel technique, we were able to estimate the background magnetic flux of
our observational data, which is consistent with a field strength of 400 G.Comment: Accepted for publication in ApJL, 12 pages, 2 figure
The arctic circle boundary and the Airy process
We prove that the, appropriately rescaled, boundary of the north polar region
in the Aztec diamond converges to the Airy process. The proof uses certain
determinantal point processes given by the extended Krawtchouk kernel. We also
prove a version of Propp's conjecture concerning the structure of the tiling at
the center of the Aztec diamond.Comment: Published at http://dx.doi.org/10.1214/009117904000000937 in the
Annals of Probability (http://www.imstat.org/aop/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Molecular random tilings as glasses
We have recently shown [Blunt et al., Science 322, 1077 (2008)] that
p-terphenyl-3,5,3',5'-tetracarboxylic acid adsorbed on graphite self-assembles
into a two-dimensional rhombus random tiling. This tiling is close to ideal,
displaying long range correlations punctuated by sparse localised tiling
defects. In this paper we explore the analogy between dynamic arrest in this
type of random tilings and that of structural glasses. We show that the
structural relaxation of these systems is via the propagation--reaction of
tiling defects, giving rise to dynamic heterogeneity. We study the scaling
properties of the dynamics, and discuss connections with kinetically
constrained models of glasses.Comment: 5 pages, 5 figure
Marshall Space Flight Center Research and Technology Report 2015
The investments in technology development we made in 2015 not only support the Agency's current missions, but they will also enable new missions. Some of these projects will allow us to develop an in-space architecture for human space exploration; Marshall employees are developing and testing cutting-edge propulsion solutions that will propel humans in-space and land them on Mars. Others are working on technologies that could support a deep space habitat, which will be critical to enable humans to live and work in deep space and on other worlds. Still others are maturing technologies that will help new scientific instruments study the outer edge of the universe-instruments that will provide valuable information as we seek to explore the outer planets and search for life
Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft
Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed
Advanced Avionics and Processor Systems for Space and Lunar Exploration
NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year
- …
