13,229 research outputs found
Nurses\u27 Alumnae Association Bulletin - Volume 3 Number 5
Jefferson Marches On
Christmas Packages
The United States Cadet Nurse Corps and Jefferson Medical College Hospital
Attention
Promotions
Welcome, Miss Hopkins
Student Nurse Activities
Scholarship
Girls Taking Anaesthesia
Our Office and Teaching Staff
Message from the President
News Bulletins
Information Please!
Coming Events
Graduate Nurses\u27 Chorus
Condolences
Emergency Nursing
Penicillin
Organized Staff - 1943-1944
New Positions
New Alumnae
News of Our Doctors
Doctors in Army
Army Nurse Corps
Navy Nurse Corps
Engagements
Marriages
New Arrival
Ionospheric limitations to time transfer by satellite
The ionosphere can contribute appreciable group delay and phase change to radio signals traversing it; this can constitute a fundamental limitation to the accuracy of time and frequency measurements using satellites. Because of the dispersive nature of the ionosphere, the amount of delay is strongly frequency-dependent. Ionospheric compensation is necessary for the most precise time transfer and frequency measurements, with a group delay accuracy better than 10 nanoseconds. A priori modeling is not accurate to better than 25%. The dual-frequency compensation method holds promise, but has not been rigorously experimentally tested. Irregularities in the ionosphere must be included in the compensation process
Coulomb Gap in Graphene Nanoribbons
We investigate the density and temperature-dependent conductance of graphene
nanoribbons with varying aspect ratio. Transport is dominated by a chain of
quantum dots forming spontaneously due to disorder. Depending on ribbon length,
electron density, and temperature, single or multiple quan- tum dots dominate
the conductance. Between conductance resonances cotunneling transport at the
lowest temperatures turns into activated transport at higher temperatures. The
density-dependent activation energy resembles the Coulomb gap in a quantitative
manner. Individual resonances show signatures of multi-level transport in some
regimes, and stochastic Coulomb blockade in others
Applications of radio interferometry to navigation
Radio astronomy experiments have demonstrated the feasibility of making precise position measurements using interferometry techniques. The application of this method to navigation and marine geodesy is discussed, and comparisons are made with existing navigation systems. The very long baseline technique, with a master station, can use either an artificial satellite or natural sources as position references; a high-speed data link is required. A completely ship-borne system is shown to be feasible, at the cost of poorer sensitivity for natural sources. A comparison of Doppler, delay and phase-track modes of operating a very long baseline configuration is made, as that between instantaneous measurements and those where a source can be tracked from horizon to transit. Geometric limitations in latitude and longitude coverage are discussed. The characteristics of natural radio sources, their flux, distribution on the sky, and apparent size are shown to provide a limit on position measurements precision. The atmosphere and frequency standard used both contribute to position measurement uncertainty by affecting interferometric phase
A bifurcation study to guide the design of a landing gear with a combined uplock/downlock mechanism
This paper discusses the insights that a bifurcation analysis can provide when designing mechanisms. A model, in the form of a set of coupled steady-state equations, can be derived to describe the mechanism. Solutions to this model can be traced through the mechanism's state versus parameter space via numerical continuation, under the simultaneous variation of one or more parameters. With this approach, crucial features in the response surface, such as bifurcation points, can be identified. By numerically continuing these points in the appropriate parameter space, the resulting bifurcation diagram can be used to guide parameter selection and optimization. In this paper, we demonstrate the potential of this technique by considering an aircraft nose landing gear, with a novel locking strategy that uses a combined uplock/downlock mechanism. The landing gear is locked when in the retracted or deployed states. Transitions between these locked states and the unlocked state (where the landing gear is a mechanism) are shown to depend upon the positions of two fold point bifurcations. By performing a two-parameter continuation, the critical points are traced to identify operational boundaries. Following the variation of the fold points through parameter space, a minimum spring stiffness is identified that enables the landing gear to be locked in the retracted state. The bifurcation analysis also shows that the unlocking of a retracted landing gear should use an unlock force measure, rather than a position indicator, to de-couple the effects of the retraction and locking actuators. Overall, the study demonstrates that bifurcation analysis can enhance the understanding of the influence of design choices over a wide operating range where nonlinearity is significant
Probing quasiparticle excitations in a hybrid single electron transistor
We investigate the behavior of quasiparticles in a hybrid electron turnstile
with the aim of improving its performance as a metrological current source. The
device is used to directly probe the density of quasiparticles and monitor
their relaxation into normal metal traps. We compare different trap geometries
and reach quasiparticle densities below 3um^-3 for pumping frequencies of 20
MHz. Our data show that quasiparticles are excited both by the device operation
itself and by the electromagnetic environment of the sample. Our observations
can be modelled on a quantitative level with a sequential tunneling model and a
simple diffusion equation
Magnetodielectric coupling of infrared phonons in single crystal CuOSeO
Reflection and transmission as a function of temperature have been measured
on a single crystal of the magnetoelectric ferrimagnetic compound
CuOSeO utilizing light spanning the far infrared to the visible
portions of the electromagnetic spectrum. The complex dielectric function and
optical properties were obtained via Kramers-Kronig analysis and by fits to a
Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric
effect near the transition temperature (~K). Assignments to
strong far infrared phonon modes have been made, especially those exhibiting
anomalous behavior around the transition temperature
The effect of platform switching on the levels of metal ion release from different implant-abutment couples
The improved peri-implant bone response demonstrated by platform switching may be the result of reduced amounts of metal ions released to the surrounding tissues. The aim of this study was to compare the levels of metal ions released from platform-matched and platform-switched implant-abutment couples as a result of accelerated corrosion. Thirty-six titanium alloy (Ti-6Al-4V) and cobalt-chrome alloy abutments were coupled with titanium cylinders forming either platform-switched or platform-matched groups (n=6). In addition, 18 unconnected samples served as controls. The specimens were subjected to accelerated corrosion by static immersion in 1% lactic acid for 1 week. The amount of metal ions ion of each test tube was measured using inductively coupled plasma mass spectrometry. Scanning electron microscope (SEM) images and energy dispersive spectroscopy X-ray analyses were performed pre- and post-immersion to assess corrosion at the interface. The platform-matched groups demonstrated higher ion release for vanadium, aluminium, cobalt, chrome, and molybdenum compared with the platform-switched groups (P<0.05). Titanium was the highest element to be released regardless of abutment size or connection (P<0.05). SEM images showed pitting corrosion prominent on the outer borders of the implant and abutment platform surfaces. In conclusion, implant-abutment couples underwent an active corrosion process resulting in metal ions release into the surrounding environment. The highest amount of metal ions released was recorded for the platform-matched groups, suggesting that platform-switching concept has a positive effect in reducing the levels of metal ion release from the implant-abutment couples
Reduction of Tribocorrosion Products When using the Platform-Switching Concept
The reduced marginal bone loss observed when using the platform-switching concept may be the result of reduced amounts of tribocorrosion products released to the peri-implant tissues. Therefore, the purpose of this study was to compare the tribocorrosion product release from various platform-matched and platform-switched implant-abutment couplings under cyclic loading. Forty-eight titanium implants were coupled with pure titanium, gold alloy, cobalt-chrome alloy, and zirconia abutments forming either platform-switched or platform-matched groups ( n = 6). The specimens were subjected to cyclic occlusal forces in a wet acidic environment for 24 h followed by static aqueous immersion for 6 d. The amount of metal ions released was measured using inductively coupled plasma mass spectrometry. Microscopic evaluations were performed pre- and postimmersion under scanning electron microscope (SEM) equipped with energy-dispersive spectroscopy X-ray for corrosion assessment at the interface and wear particle characterization. All platform-switched groups showed less metal ion release compared with their platform-matched counterparts within each abutment material group ( P < 0.001). Implants connected to platform-matched cobalt-chrome abutments demonstrated the highest total mean metal ion release (218 ppb), while the least total mean ion release (11 ppb) was observed in the implants connected to platform-switched titanium abutments ( P ≤ 0.001). Titanium was released from all test groups, with its highest mean release (108 ppb) observed in the implants connected to platform-matched gold abutments ( P < 0.001). SEM images showed surface tribocorrosion features such as pitting and bands of fretting scars. Wear particles were mostly titanium, ranging from submicron to 48 µm in length. The platform-matched groups demonstrated a higher amount of metal ion release and more surface damage. These findings highlight the positive effect of the platform-switching concept in the reduction of tribocorrosion products released from dental implants, which consequently may minimize the adverse tissue reactions that lead to peri-implant bone loss
- …
