170,387 research outputs found
The Coulomb Interaction between Pion-Wavepackets: The piplus-piminus Puzzle
The time dependent Schr\"odinger equation for -- pairs, which
are emitted from the interaction zone in relativistic nuclear collisions, is
solved using wavepacket states. It is shown that the Coulomb enhancement in the
momentum correlation function of such pairs is smaller than obtained in earlier
calculations based on Coulomb distorted plane waves. These results suggest that
the experimentally observed positive correlation signal cannot be caused by the
Coulomb interaction between pions emitted from the interaction zone. But other
processes which involve long-lived resonances and the related extended source
dimensions could provide a possible explanation for the observed signal.Comment: 12 pages, LaTeX, 1 figur
The Inflationary Energy Scale
The energy scale of inflation is of much interest, as it suggests the scale
of grand unified physics and also governs whether cosmological events such as
topological defect formation can occur after inflation. The COBE results are
used to limit the energy scale of inflation at around 60 -foldings from the
end of inflation. An exact dynamical treatment based on the Hamilton-Jacobi
equations is then used to translate this into limits on the energy scale at the
end of inflation. General constraints are given, and then tighter constraints
based on physically motivated assumptions regarding the allowed forms of
density perturbation and gravitational wave spectra. These are also compared
with the values of familiar models.Comment: 17 pages (plus three figures, available from the author as hard
copies only), standard LaTeX, SUSSEX-AST 93/7-
Laser-UV-microirradiation of interphase nuclei and posttreatment with caffeine: a new approach to establish the arrangement of interphase chromosomes
Laser UV microirradiation of Chinese hamster interphase cells combined with caffeine post-treatment produced different patterns of chromosome damage in mitosis following irradiation of a small area of the nucleus that may be classified in three categories: I) intact metaphase figures, II) chromosome damage confined to a small area of the metaphase spread, III) mitotic figures with damage on all chromosomes. Category III might be the consequence of a non-localized distortion of nuclear metabolism. By contrast, category II may reflect localized DNA damage induced by microirradiation, which could not be efficiently repaired due to the effect of caffeine. If this interpretation is right, in metaphase figures of category II chromosome damage should occur only at the irradiation site. The effect might then be used to investigate neighbourhood relationships of individual chromosomes in the interphase nucleus
Kramers-Kronig relations for plasma-like permittivities and the Casimir force
The Kramers-Kronig relations are derived for the permittivity of the usual
plasma model which neglects dissipation and of a generalized model which takes
into account the interband transitions. The generalized plasma model is shown
to be consistent with all precision experiments on the measurement of the
Casimir force.Comment: 9 pages, 2 figures, 1 table; to appear in J. Phys. A: Math. Theor.
(fast track communication
Towards a Realistic Equation of State of Strongly Interacting Matter
We consider a relativistic strongly interacting Bose gas. The interaction is
manifested in the off-shellness of the equilibrium distribution. The equation
of state that we obtain for such a gas has the properties of a realistic
equation of state of strongly interacting matter, i.e., at low temperature it
agrees with the one suggested by Shuryak for hadronic matter, while at high
temperature it represents the equation of state of an ideal ultrarelativistic
Stefan-Boltzmann gas, implying a phase transition to an effectively weakly
interacting phase.Comment: LaTeX, figures not include
Hadronic Entropy Enhancement and Low Density QGP
Recent studies show that for central collisions the rising of the incident
energy from AGS to RHIC decreases the value of the chemical potential in the
Hadron-QGP phase diagram. Thus, the formation of QGP at RHIC energies in
central collisions may be expected to occur at very small values of the
chemical potential. Using many different relativistic mean-field hadronic
models (RMF) at this regime we show that the critical temperature for the
Hadron-QGP transition is hadronic model independent. We have traced back the
reason for this and conclude that it comes from the fact that the QGP entropy
is much larger than the hadronic entropy obtained in all the RMF models. We
also find that almost all of these models present a strong entropy enhancement
in the hadronic sector coming from the baryonic phase transition to a
nucleon-antinucleon plasma. This result is in agreement with the recent data
obtained in the STAR collaboration at RHIC where it was found a rich
proton-antiproton matter
Probing the distribution of dark matter in the Abell 901/902 supercluster with weak lensing
We present a weak shear analysis of the Abell 901/902 supercluster, composed
of three rich clusters at z=0.16. Using a deep R-band image from the 0.5 x 0.5
degree MPG/ESO Wide Field Imager together with supplementary B-band
observations, we build up a comprehensive picture of the light and mass
distributions in this region. We find that, on average, the light from the
early-type galaxies traces the dark matter fairly well, although one cluster is
a notable exception to this rule. The clusters themselves exhibit a range of
mass-to-light (M/L) ratios, X-ray properties, and galaxy populations. We
attempt to model the relation between the total mass and the light from the
early-type galaxies with a simple scale-independent linear biasing model. We
find M/L_B=130h for the early type galaxies with zero stochasticity, which, if
taken at face value, would imply Omega_m < 0.1. However, this linear relation
breaks down on small scales and on scales equivalent to the average cluster
separation (approximately 1 Mpc), demonstrating that a single M/L ratio is not
adequate to fully describe the mass-light relation in the supercluster. Rather,
the scatter in M/L ratios observed for the clusters supports a model
incorporating non-linear biasing or stochastic processes. Finally, there is a
clear detection of filamentary structure connecting two of the clusters, seen
in both the galaxy and dark matter distributions, and we discuss the effects of
cluster-cluster and cluster-filament interactions as a means to reconcile the
disparate descriptions of the supercluster.Comment: 23 pages, 19 figures. ApJ, accepte
Six-wave mixing: secular resonances in a higher-order mechanism for second-harmonic generation
Asymptotics and functional form of correlators in the XX - spin chain of finite length
We verify the functional form of the asymptotics of the spin - spin equal -
time correlation function for the XX-chain, predicted by the hypothesis of
conformal invariance at large distances and by the bosonization procedure. We
point out that bosonization also predicts the functional form of the
correlators for the chains of finite length. We found the exact expression for
the spin- spin equal- time correlator on finite lattice. We find the excellent
agreement of the exact correlator with the prediction given by the leading
asymptotics result up to the very small distances. We also establish the
correspondence between the value of the constant before the asymptotics for the
XX- chain with the expression for this constant proposed by Lukyanov and
Zamolodchikov. We also evaluate the constant corresponding to the subleading
term in the asymptotics in a way which is different from the previous studies.Comment: LaTex, 12 page
Vector Theory of Gravity
We proposed a gravitation theory based on an analogy with electrodynamics on
the basis of a vector field. For the first time, to calculate the basic
gravitational effects in the framework of a vector theory of gravity, we use a
Lagrangian written with gravitational radiation neglected and generalized to
the case of ultra-relativistic speeds. This allows us to accurately calculate
the values of all three major gravity experiments: the values of the perihelion
shift of Mercury, the light deflection angle in the gravity field of the Sun
and the value of radar echo delay. The calculated values coincide with the
observed ones. It is shown that, in this theory, there exists a model of an
expanding Universe.Comment: 9 page
- …
