354 research outputs found
The radio emission from the Galaxy at 22 MHz
We present maps of the 22MHz radio emission between declinations -28d and
+80d, covering ~73% of the sky, derived from observations with the 22MHz
radiotelescope at the Dominion Radio Astrophysical Observatory (DRAO). The
resolution of the telescopt (EWxNS) is 1.1d x 1.7d secant(zenith angle). The
maps show the large scale features of the emission from the Galaxy including
the thick non-thermal disk, the North Polar Spur (NPS) and absorption due to
discrete HII regions and to an extended band of thermal electrons within 40d of
the Galactic centre. We give the flux densities of nine extended supernova
remnants shown on the maps
Robot life: simulation and participation in the study of evolution and social behavior.
This paper explores the case of using robots to simulate evolution, in particular the case of Hamilton's Law. The uses of robots raises several questions that this paper seeks to address. The first concerns the role of the robots in biological research: do they simulate something (life, evolution, sociality) or do they participate in something? The second question concerns the physicality of the robots: what difference does embodiment make to the role of the robot in these experiments. Thirdly, how do life, embodiment and social behavior relate in contemporary biology and why is it possible for robots to illuminate this relation? These questions are provoked by a strange similarity that has not been noted before: between the problem of simulation in philosophy of science, and Deleuze's reading of Plato on the relationship of ideas, copies and simulacra
Probing the Magnetized Interstellar Medium Surrounding the Planetary Nebula Sh 2-216
We present 1420 MHz polarization images of a 2.5 X 2.5 degree region around
the planetary nebula (PN) Sh 2-216. The images are taken from the Canadian
Galactic Plane Survey (CGPS). An arc of low polarized intensity appears
prominently in the north-east portion of the visible disk of Sh 2-216,
coincident with the optically identified interaction region between the PN and
the interstellar medium (ISM). The arc contains structural variations down to
the ~1 arcminute resolution limit in both polarized intensity and polarization
angle. Several polarization-angle "knots" appear along the arc. By comparison
of the polarization angles at the centers of the knots and the mean
polarization angle outside Sh 2-216, we estimate the rotation measure (RM)
through the knots to be -43 +/- 10 rad/m^2. Using this estimate for the RM and
an estimate of the electron density in the shell of Sh 2-216, we derive a
line-of-sight magnetic field in the interaction region of 5.0 +/- 2.0 microG.
We believe it more likely the observed magnetic field is interstellar than
stellar, though we cannot completely dismiss the latter possibility. We
interpret our observations via a simple model which describes the ISM magnetic
field around Sh 2-216, and comment on the potential use of old PNe as probes of
the magnetized ISM.Comment: 25 pages, 4 figures. Accepted for publication in the Astrophysical
Journa
A molecular shell with star formation toward the supernova remnant G349.7+0.2
A field of ~38'x38' around the supernova remnant (SNR) G349.7+0.2 has been
surveyed in the CO J=1-0 transition with the 12 Meter Telescope of the NRAO,
using the On-The-Fly technique. The resolution of the observations is 54". We
have found that this remnant is interacting with a small CO cloud which, in
turn, is part of a much larger molecular complex, which we call the ``Large CO
Shell''. The Large CO Shell has a diameter of about 100 pc, an H_2 mass of
930,000 solar masses, and a density of 35 cm-3. We investigate the origin of
this structure and suggest that an old supernova explosion ocurred about 4
million years ago, as a suitable hypothesis. Analyzing the interaction between
G349.7+0.2 and the Large CO Shell, it is possible to determine that the shock
front currently driven into the molecular gas is a non-dissociative shock
(C-type), in agreement with the presence of OH 1720 MHz masers. The positional
and kinematical coincidence among one of the CO clouds that constitute the
Large CO Shell, an IRAS point-like source and an ultracompact H II region,
indicate the presence of a recently formed star. We suggest that the formation
of this star was triggered during the expansion of the Large CO Shell, and
suggest the possibility that the same expansion also created the progenitor
star of G349.7+0.2. The Large CO Shell would then be one of the few
observational examples of supernova-induced star formation.Comment: accepted in Astronomical Journal, corrected typo in the abstract (in
first line, 38' instead of 38"
Faraday Tomography of the North Polar Spur: Constraints on the distance to the Spur and on the Magnetic Field of the Galaxy
We present radio continuum and polarization images of the North Polar Spur
(NPS) from the Global Magneto-Ionic Medium Survey (GMIMS) conducted with the
Dominion Radio Astrophysical Observatory 26-m Telescope. We fit polarization
angle versus wavelength squared over 2048 frequency channels from 1280 to 1750
MHz to obtain a Faraday Rotation Measure (RM) map of the NPS. Combining this RM
map with a published Faraday depth map of the entire Galaxy in this direction,
we derive the Faraday depth introduced by the NPS and the Galactic interstellar
medium (ISM) in front of and behind the NPS. The Faraday depth contributed by
the NPS is close to zero, indicating that the NPS is an emitting only feature.
The Faraday depth caused by the ISM in front of the NPS is consistent with zero
at b>50 degree, implying that this part of the NPS is local at a distance of
approximately several hundred parsecs. The Faraday depth contributed by the ISM
behind the NPS gradually increases with Galactic latitude up to b=44 degree,
and decreases at higher Galactic latitudes. This implies that either the part
of the NPS at b<44 degree is distant or the NPS is local but there is a sign
change of the large-scale magnetic field. If the NPS is local, there is then no
evidence for a large-scale anti-symmetry pattern in the Faraday depth of the
Milky Way. The Faraday depth introduced by the ISM behind the NPS at latitudes
b>50 degree can be explained by including a coherent vertical magnetic field.Comment: 9 pages, 8 figures, accepted for publication in ApJ. Some figures
have been degraded to reduce sizes, for a high resolution version, see
http://physics.usyd.edu.au/~xhsun/ms_nps.pd
A Highly Ordered Faraday-Rotation Structure in the Interstellar Medium
We describe a Faraday-rotation structure in the Interstellar Medium detected
through polarimetric imaging at 1420 MHz from the Canadian Galactic Plane
Survey (CGPS). The structure, at l=91.8, b=-2.5, has an extent of ~2 degree,
within which polarization angle varies smoothly over a range of ~100 degree.
Polarized intensity also varies smoothly, showing a central peak within an
outer shell. This region is in sharp contrast to its surroundings, where
low-level chaotic polarization structure occurs on arcminute scales. The
Faraday-rotation structure has no counterpart in radio total intensity, and is
unrelated to known objects along the line of sight, which include a Lynds
Bright Nebula, LBN 416, and the star cluster M39 (NGC7092). It is interpreted
as a smooth enhancement of electron density. The absence of a counterpart,
either in optical emission or in total intensity, establishes a lower limit to
its distance. An upper limit is determined by the strong beam depolarization in
this direction. At a probable distance of 350 +/- 50 pc, the size of the object
is 10 pc, the enhancement of electron density is 1.7 cm-3, and the mass of
ionized gas is 23 M_sun. It has a very smooth internal magnetic field of
strength 3 microG, slightly enhanced above the ambient field. G91.8-2.5 is the
second such object to be discovered in the CGPS, and it seems likely that such
structures are common in the Magneto-Ionic Medium.Comment: 16 pages, 5 figures, ApJ accepte
Rotation Measure Synthesis of Galactic Polarized Emission with the DRAO 26-m Telescope
Radio polarimetry at decimetre wavelengths is the principal source of
information on the Galactic magnetic field. The diffuse polarized emission is
strongly influenced by Faraday rotation in the magneto-ionic medium and
rotation measure is the prime quantity of interest, implying that all Stokes
parameters must be measured over wide frequency bands with many frequency
channels. The DRAO 26-m Telescope has been equipped with a wideband feed, a
polarization transducer to deliver both hands of circular polarization, and a
receiver, all operating from 1277 to 1762 MHz. Half-power beamwidth is between
40 and 30 arcminutes. A digital FPGA spectrometer, based on commercially
available components, produces all Stokes parameters in 2048 frequency channels
over a 485-MHz bandwidth. Signals are digitized to 8 bits and a Fast Fourier
Transform is applied to each data stream. Stokes parameters are then generated
in each frequency channel. This instrument is in use at DRAO for a Northern sky
polarization survey. Observations consist of scans up and down the Meridian at
a drive rate of 0.9 degree per minute to give complete coverage of the sky
between declinations -30 degree and 90 degree. This paper presents a complete
description of the receiver and data acquisition system. Only a small fraction
of the frequency band of operation is allocated for radio astronomy, and about
20 percent of the data are lost to interference. The first 8 percent of data
from the survey are used for a proof-of-concept study, which has led to the
first application of Rotation Measure Synthesis to the diffuse Galactic
emission obtained with a single-antenna telescope. We find rotation measure
values for the diffuse emission as high as approximately 100 rad per square
metre, much higher than recorded in earlier work.Comment: Accepted for publication in The Astronomical Journa
The JCMT 12CO(3-2) Survey of the Cygnus X Region: I. A Pathfinder
Cygnus X is one of the most complex areas in the sky. This complicates
interpretation, but also creates the opportunity to investigate accretion into
molecular clouds and many subsequent stages of star formation, all within one
small field of view. Understanding large complexes like Cygnus X is the key to
understanding the dominant role that massive star complexes play in galaxies
across the Universe.
The main goal of this study is to establish feasibility of a high-resolution
CO survey of the entire Cygnus X region by observing part of it as a
Pathfinder, and to evaluate the survey as a tool for investigating the
star-formation process.
A 2x4 degree area of the Cygnus X region has been mapped in the 12CO(3-2)
line at an angular resolution of 15" and a velocity resolution of ~0.4km/s
using HARP-B and ACSIS on the James Clerk Maxwell Telescope. The star formation
process is heavily connected to the life-cycle of the molecular material in the
interstellar medium. The high critical density of the 12CO(3-2) transition
reveals clouds in key stages of molecule formation, and shows processes that
turn a molecular cloud into a star.
We observed ~15% of Cygnus X, and demonstrated that a full survey would be
feasible and rewarding. We detected three distinct layers of 12CO(3-2)
emission, related to the Cygnus Rift (500-800 pc), to W75N (1-1.8 kpc), and to
DR21 (1.5-2.5 kpc). Within the Cygnus Rift, HI self-absorption features are
tightly correlated with faint diffuse CO emission, while HISA features in the
DR21 layer are mostly unrelated to any CO emission. 47 molecular outflows were
detected in the Pathfinder, 27 of them previously unknown. Sequentially
triggered star formation is a widespread phenomenon.Comment: 18 pages, 13 figures, accepted for publication in Astronomy &
Astrophysic
A Sino-German 6\ cm polarization survey of the Galactic plane. V. Large supernova remnants
Observations of large supernova remnants (SNRs) at high frequencies are rare,
but provide valuable information about their physical properties. The total
intensity and polarization properties of 16 large SNRs in the Galactic plane
were investigated based on observations of the Urumqi 6\ cm
polarization survey of the Galactic plane with an angular resolution of
9\farcm5. We extracted total intensity and linear polarization maps of large
SNRs from the Urumqi 6\ cm survey, obtained their integrated flux
densities, and derived the radio spectra in context with previously published
flux densities at various frequencies. In particular, Effelsberg 11\
cm and 21\ cm survey data were used for calculating integrated flux
densities. The 6\ cm polarization data also delineate the magnetic
field structures of the SNRs. We present the first total intensity maps at
6\ cm for SNRs G106.3+2.7, G114.3+0.3, G116.5+1.1, G166.0+4.3 (VRO
42.05.01), G205.5+0.5 (Monoceros Nebula) and G206.9+2.3 (PKS 0646+06) and the
first polarization measurements at 6\ cm for SNRs G82.2+5.3 (W63),
G106.3+2.7, G114.3+0.3, G116.5+1.1, G166.0+4.3 (VRO 42.05.01), G205.5+0.5
(Monoceros Nebula) and G206.9+2.3 (PKS 0646+06). Most of the newly derived
integrated radio spectra are consistent with previous results. The new flux
densities obtained from the Urumqi 6\ cm, Effelsberg 11\ cm
and 21\ cm surveys are crucial to determine the spectra of SNR
G65.1+0.6, G69.0+2.7 (CTB 80), G93.7-0.2 and G114.3+0.3. We find that
G192.81.1 (PKS 0607+17) consists of background sources, \ion{H}{II} regions
and the extended diffuse emission of thermal nature, and conclude that
G192.81.1 is not a SNR.Comment: 15 pages, 10 figures, accepted by A&\amp;A. Language improved. For
the version with high resolution figures, please go to:
http://zmtt.bao.ac.cn/6cm/paper/gxy_largeSNR.pd
DA495 - an aging pulsar wind nebula
We present a radio continuum study of the pulsar wind nebula (PWN) DA 495
(G65.7+1.2), including images of total intensity and linear polarization from
408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations
with the Effelsberg 100-m Radio Telescope. Removal of flux density
contributions from a superimposed \ion{H}{2} region and from compact
extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz,
with a spectral index below the break and
above it (). The
spectral break is more than three times lower in frequency than the lowest
break detected in any other PWN. The break in the spectrum is likely the result
of synchrotron cooling, and DA 495, at an age of 20,000 yr, may have
evolved from an object similar to the Vela X nebula, with a similarly energetic
pulsar. We find a magnetic field of 1.3 mG inside the nebula. After
correcting for the resulting high internal rotation measure, the magnetic field
structure is quite simple, resembling the inner part of a dipole field
projected onto the plane of the sky, although a toroidal component is likely
also present. The dipole field axis, which should be parallel to the spin axis
of the putative pulsar, lies at an angle of {\sim}50\degr east of the North
Celestial Pole and is pointing away from us towards the south-west. The upper
limit for the radio surface brightness of any shell-type supernova remnant
emission around DA 495 is OAWatt
m Hz sr (assuming a radio spectral index of ), lower than the faintest shell-type remnant known to date.Comment: 25 pages, accepted by Ap
- …
