8,884 research outputs found

    Extremely low-frequency spectroscopy in low-field nuclear magnetic resonance

    No full text
    We demonstrate a new phenomenon in nuclear magnetic resonance spectroscopy, in which nuclear spin transitions are induced by radio frequency irradiation at extremely low frequencies (of the order of a few Hz). Slow Rabi oscillations are observed between spin states of different exchange symmetry. These “forbidden” transitions are rendered weakly allowed by differential electronic shielding effects on the radio frequency field. We generate coherence between the singlet and triplet states of 15N-labeled nitrous oxide in solution, and estimate the scalar coupling between the two 15N nuclei with a precision of a few mHz

    Non-Markovian entanglement dynamics in the presence of system-bath coherence

    Full text link
    A complete treatment of the entanglement of two-level systems, which evolves through the contact with a thermal bath, must include the fact that the system and the bath are not fully separable. Therefore, quantum coherent superpositions of system and bath states, which are almost never fully included in theoretical models, are invariably present when an entangled state is prepared experimentally. We show their importance for the time evolution of the entanglement of two qubits coupled to independent baths. In addition, our treatment is able to handle slow and low-temperature thermal baths.Comment: Accepted for publication in Phys. Rev. Lett

    Symmetry-based pulse sequences in solid-state NMR and applications to biological systems

    No full text
    We present some applications of solid-state nuclear magnetic resonance to model compounds and biological systems. We highlight a class of pulse sequences that are designed based on symmetry properties of the internal spin interactions. Examples are given showing resonance assignments, determination of internuclear distances, and torsion angle determinations in representative model systems as well as true biological systems

    Nuclear spin relaxation

    No full text
    This article attempts to explain what nuclear relaxation is, why it can be a friend, why it can also be a foe, and how the destructive qualities of relaxation may sometimes be held at bay using the symmetry properties of the quantum states and of the relaxation processes

    Spin dynamics: basics of nuclear magnetic resonance

    Get PDF

    Symmetry constraints on spin dynamics: application to hyperpolarized NMR

    No full text
    Spin dynamical evolution is constrained by the symmetries of the spin Hamiltonians that generate the quantum dynamics. The consequences of symmetry-induced constraints are examined for some common hyperpolarized NMR experiments, including the excitation of singlet order in spin-pair systems, and the transfer of parahydrogen-induced hyperpolarized singlet order to magnetization in systems displaying chemical and magnetic equivalence

    Micromechanical microphone using sideband modulation of nonlinear resonators

    Full text link
    We report the successful detection of an audio signal via sideband modulation of a nonlinear piezoelectric micromechanical resonator. The 270×\times96-μ\mum resonator was shown to be reliable in audio detection for sound intensity levels as low as ambient room noise and to have an unamplified sensitivity of 23.9 μ\muV/Pa. Such an approach may be adapted in acoustic sensors and microphones for consumer electronics or medical equipment such as hearing aids.Comment: 5 pages, 3 figure

    Evolution of Quantum Discord and its Stability in Two-Qubit NMR Systems

    Full text link
    We investigate evolution of quantum correlations in ensembles of two-qubit nuclear spin systems via nuclear magnetic resonance techniques. We use discord as a measure of quantum correlations and the Werner state as an explicit example. We first introduce different ways of measuring discord and geometric discord in two-qubit systems and then describe the following experimental studies: (a) We quantitatively measure discord for Werner-like states prepared using an entangling pulse sequence. An initial thermal state with zero discord is gradually and periodically transformed into a mixed state with maximum discord. The experimental and simulated behavior of rise and fall of discord agree fairly well. (b) We examine the efficiency of dynamical decoupling sequences in preserving quantum correlations. In our experimental setup, the dynamical decoupling sequences preserved the traceless parts of the density matrices at high fidelity. But they could not maintain the purity of the quantum states and so were unable to keep the discord from decaying. (c) We observe the evolution of discord for a singlet-triplet mixed state during a radio-frequency spin-lock. A simple relaxation model describes the evolution of discord, and the accompanying evolution of fidelity of the long-lived singlet state, reasonably well.Comment: 9 pages, 7 figures, Phys. Rev. A (in press
    corecore